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Fusion reactivity is usually obtained using a Maxwellian distribution. However, energy-dependent

radial diffusion can modify the energy distribution. Superbanana diffusion is energy-dependent and

occurs in nonaxisymmetric magnetic confinement devices, such as stellarators, because of ripple-

trapped particles which can take large steps between collisions. In this paper, the D-T fusion reactivity

is calculated using a non-Maxwellian energy distribution obtained by solving the Fokker-Planck

equation numerically, including radial superbanana diffusion as well as energy scattering. The ions in

the tail of the distribution, with energies larger than thermal, which are most needed for fusion, are

depleted by superbanana diffusion. In this paper, it is shown that the D-T fusion reactivity is reduced

by tail ion depletion due to superbanana diffusion, by roughly a factor of 0.5 for the parameters used in

the calculation. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4748138]

I. INTRODUCTION

The fusion power output of a fusion reactor1 depends on

the fusion reactivity for the fuel species used. Fusion reactiv-

ity is defined here as the average over minor radius, of the in-

tegral of the energy-dependent fusion rate for the fusion

reaction being considered, multiplied by the energy distribu-

tion function for the fuel ions. It is usually calculated using a

Maxwellian distribution. However, energy-dependent radial

diffusion can modify the energy distribution. Superbanana

diffusion is energy-dependent and occurs in nonaxisymmet-

ric magnetic confinement devices, such as stellarators,

because of ripple-trapped particles which can take large steps

between collisions. This tends to deplete the ions in the tail

of the distribution function, with energies larger than ther-

mal, which are the ones most needed for fusion.

There are two important regimes of collisionality for

superbanana diffusion. In the “1=� regime,” the single-ion

diffusion coefficient is proportional to 1=� and increases with

ion energy E as E7=2. Since the rate of repopulation of high-

energy ions by Coulomb scattering decreases with energy as

E�3=2, the tail of the energy distribution for which the fusion

reaction rate is appreciable would be strongly depleted. How-

ever, at lower collisionality, which occurs at higher particle

energy, the appropriate collisionality regime is the

“� regime,” where the diffusion coefficient is proportional to

�. Because this decreases with energy as E�3=2, it implies that

the tail would not be strongly depleted. Also, the 1=� regime

diffusion coefficient depends on the magnetic field structure

through the effective helical field ripple, which increases

from the plasma center to the edge, while the ion density and

temperature decrease toward the edge. This implies that

superbanana diffusion would not have as strong an effect on

the radially averaged fusion reactivity as indicated above.

Clearly, a quantitative assessment of the effect of superba-

nana diffusion, including radial profile effects, is needed.

The ion distribution function has been obtained by solv-

ing the Fokker-Planck equation numerically, including radial

superbanana diffusion as well as energy scattering. A steady-

state solution has been found in which these two diffusion

processes are balanced. The D-T fusion reactivity has been

calculated using this distribution function, which gives a

quantitative assessment of the effect of superbanana diffu-

sion on fusion reactivity in stellarators.

The standard neoclassical result for the superbanana dif-

fusion coefficient Dsb was given by Galeev and Sagdeev.2 It

was expressed in terms of the helical field ripple �h for a sim-

ple model stellarator magnetic field. There are two important

regimes of collisionality,3 or equivalently ion energy: the

1=� regime for tail ions with energies somewhat higher than

thermal, and the � regime for tail ions with still higher ener-

gies, whose collision rates are smaller.

In the 1=� regime, Nemov et al. showed4 that Dsb is

given by the standard neoclassical expression with the helical

field ripple �h replaced by an effective ripple modulation am-

plitude, �ef f . They expressed the effective ripple in terms of a

weighted integral of the geodesic curvature along the mag-

netic field line covering the magnetic surface, which can be

evaluated numerically, for a given magnetic field geometry.

This would include the effect of the diamagnetic magnetic

well produced by the plasma at higher beta (ratio of plasma

pressure to magnetic pressure). In particular, for quasi-

helically symmetric (QHS) configurations,5 they showed that

�ef f ¼ 0, and thus Dsb would be zero in the 1=� regime.

However, exact QHS equilibria do not exist,6 and so the

effective helical ripple cannot be zero for a nonaxisymmetric

magnetic confinement device. For typical values of �ef f , it is

shown in this paper that the fusion reactivity is reduced by

superbanana diffusion. The effect is not as drastic as indi-

cated by simple considerations taking into account only the

1=� regime, because of the existence of the � regime and ra-

dial profile effects.

In Sec. II, a simplified Fokker-Planck equation for the

tail ions is given, with superbanana diffusion included along
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with energy scattering. In Sec. III, superbanana diffusion is

discussed, and a connection formula for the diffusion coeffi-

cient is given to include both collisionality regimes. In

Sec. IV, the Fokker-Planck equation for the tail particles is

solved numerically to obtain the energy dependence of the

tail ion distribution function, for different values of the pa-

rameter d ¼ �ef f ð1Þ, the effective helical field ripple at the

edge of the plasma. In Sec. V, this distribution is used to cal-

culate the fusion reactivity as a function of the parameter d.

A summary and conclusions are given in Sec. VI.

II. SIMPLIFIED FOKKER-PLANCK EQUATION FOR
TAIL IONS

Tail ions are defined as those with speeds somewhat

greater than the ion thermal speed. Their density is assumed

to be much less than that of the thermal ions, and they are

treated as test particles,7 using the linearized ion-ion colli-

sion term. The thermal ions are assumed to have a Maxwel-

lian distribution. Collisions with electrons may be neglected,

for the ion energies of interest. Although a 50-50 D-T mix-

ture of fuel ions is of interest here, a single-mass model is

used with an effective mass mi ¼ 2:5 mp, where mp is the

proton mass.

The radial transport process is assumed to be dominated

by superbanana diffusion. The derivation of the superbanana

diffusion coefficient2 assumes that the bounce frequency of

the helical ripple-trapped ions is larger than any other fre-

quency. This leads to a bounce-averaged kinetic equation in

which the averaged poloidal precession and radial drift

appear, along with pitch-angle scattering. For ions with ener-

gies higher than thermal, energy scattering can be considered

weaker than pitch-angle scattering and appears together with

radial diffusion in the next order equation. This equation,

obtained by averaging over pitch angles and a magnetic sur-

face, can be written as follows, using the dimensionless time
~t ¼ �00t, where

�00 ¼ 8pn0e4 ln K=ðm2
i v

3
i0Þ (1)

with n0 and vi0 the ion density and thermal speed at r¼ 0,

respectively; the dimensionless radius q ¼ r=a, where a is

the plasma radius; and the dimensionless kinetic energy

E ¼ miv2=ð2Ti0Þ, where Ti0 is the ion temperature at q ¼ 0:

@f

@~t
¼ ~niðqÞ
E1=2

@

@E Hðy1=2Þ f þ ~TiðqÞ
@f

@E

� �� �

þ 1

q
@

@q
q ~Dsb

@f

@q

� �
: (2)

Here, ~ni ¼ ni=n0; ~Ti ¼ Ti=Ti0; HðxÞ ¼ UðxÞ � xU0ðxÞ with

UðxÞ the error function and y ¼ E= ~Ti , and ~Dsb ¼ Dsb=�00a2

is the normalized superbanana diffusion coefficient. Averages

over pitch angles and a magnetic surface are not indicated

explicitly, and a simplified expression for Dsb will be used.

The collision processes included in Eq. (2) are energy

diffusion, which generally increases the ion’s energy, and

friction, which decreases it. Ions diffuse up in energy into

the tail, where they are lost radially by superbanana diffu-

sion. A source necessary for a steady state has been assumed

to be zero for the tail ions. Heating of the tail ions due to

fusion alpha-particle slowing down has been neglected, as

well as ion loss due to fusion reactions and direct orbit loss.

III. SUPERBANANA DIFFUSION

In this paper, simple random walk formulas for the

superbanana diffusion coefficient Dsb are used, depending on

the collisionality regime.3 The most relevant collisionality

regime is that for the least energetic part of the tail, since the

ions diffusing up in energy from the thermal distribution

enter this regime first. This is the most collisional part of the

tail, and we assume that this is the 1=� regime. At higher

energies, or lower collision rates, the � regime applies.

In the 1=� regime, a simple random walk formula for

the superbanana diffusion coefficient including the modifica-

tion of Nemov et al.4 is

D
1=�
sb ¼ ð2�ef f Þ1=2ð�=2�ef f Þ

vd

�=2�ef f

� �2

; (3)

where �ef f is the effective helical field ripple,

� � �00~ni=E3=2 (4)

is the pitch-angle scattering frequency, vd ’ ðv2=2Þ=XiR is

the radial guiding center drift velocity, with Xi ¼ eB=mi the

ion gyrofrequency, and R is the major radius. This formula is

an estimate for a random walk which involves the fraction

ð2�ef f Þ1=2
of the ions trapped in helical magnetic wells, a step

rate �=ð2�ef f Þ which is their detrapping rate, the 90� collision

frequency divided by the well depth. The superbanana orbits

are assumed to be interrupted by collisions before they are

completed, so the radial step size is vd=ð�=2�ef f Þ which is the

distance the ions drift before they are detrapped by colli-

sions. The diffusion coefficient thus has a strong energy de-

pendence is an increasing function of the effective helical

field ripple and is a decreasing function of the ion density:

D
1=�
sb / �

3=2
ef f E7=2=~ni: (5)

The � regime occurs at lower collision frequencies,

where �=ð2�ef f Þ < Xh, with Xh the poloidal precession fre-

quency. A random walk formula is obtained by assuming

that superbanana orbits are infrequently interrupted by colli-

sions, so the step size is vd=Xh:

D�
sb ¼ ð2�ef f Þ1=2ð�=2�ef f Þ

vd

Xh

� �2

: (6)

The poloidal precession frequency is Xh ¼ XhB þ XhE,

where XhB is due to the poloidal grad-B drift and XhE is due

to the poloidal E� B drift. The first of these is8

XhB ¼ �
v2

Xia2
�h0 (7)

(using a helical ripple profile �hðqÞ ¼ �h0q2). The second of

these can be obtained by assuming an electrostatic potential
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profile / ¼ /0q
2, where /0 > 0 (assuming the “ion root” for

the ambipolar potential), and is

XhE ¼ �
v2

i0

Xia2
~Ti: (8)

A connection formula was used in the calculation to

cover the entire range of interest for ion energy, effective

helical ripple, and ion density. Since the condition for the �
regime is equivalent to the condition that D�

sb < D
1=�
sb , the

following connection formula was used:

Dsb ¼
1

D�
sb

þ 1

D
1=�
sb

" #�1

; (9)

which approximately picks out the smaller of the two

expressions.

The thermal ion density and temperature profiles were

assumed to be given by

~ni ¼
ð1� q0Þ2 � 0:9ðq� q0Þ2

ð1� q0Þ2
;

~Ti ¼
ð1� q0Þ2 � 0:7ðq� q0Þ2

ð1� q0Þ2
; (10)

where q0 ¼ 0:01 (nonzero to avoid the singularity in Eq. (2)

at q ¼ 0). The radial profile of the effective helical ripple

was assumed to be given by

~�ef f ðqÞ ¼ 0:1þ 0:9q4; (11)

which is strongly increasing toward the plasma edge, similar

to some calculated profiles.9,10

As shown in Fig. 1, the superbanana diffusion coeffi-

cient increases strongly with energy E for small minor radius

q, but not for large minor radius. This is because the 1=� re-

gime occurs mainly for small q, for the chosen parameters.

IV. NUMERICAL SOLUTION FOR THE STEADY-STATE
TAIL ENERGY DISTRIBUTION

Only the steady-state solution of Eq. (2) is of interest. It

was obtained by solving an initial-value problem and using

the solution after it is no longer changing with time. It was

solved in an energy interval E1 � E � E2; the energy boun-

daries used in the calculation were E1 ¼ 2:0 and E2 ¼ 6:0.

The condition E2 � ðmi=meÞ1=3
, for justifying the neglect of

collisions with electrons, is reasonably well satisfied.

The initial condition was taken to be a Maxwellian with

its temperature equal to that of the thermal distribution:

f ðE; q; 0Þ ¼ nf ðqÞ exp½�ðE � E1Þ= ~TiðqÞ�; (12)

where the initial fast-ion density was chosen as

nf ðqÞ ¼ 1� ðq� q0Þ2=ð1� q0Þ2: (13)

The boundary condition at the low energy boundary E ¼ E1

was taken to be

f ðE1; q; tÞ ¼ nf ðqÞ (14)

consistent with the initial condition. The boundary condition

at the high energy boundary E ¼ E2 was taken to be

f ðE2; q; tÞ þ ~TiðqÞð@f=@EÞE!E2
¼ 0; (15)

which means the ion flux to higher energies is zero. The

equation was solved in the radial range q0 � q � 1 with the

boundary conditions

ð@f=@qÞq!q0
¼ 0; f ðE; 1; tÞ ¼ 0: (16)

The fast ion density goes to zero at the plasma edge, even

though the thermal ion density does not.

The machine parameters used in the calculation are cen-

tral ion density ni0 ¼ 1020 m�3, magnetic field (taken to be

constant) B¼ 5.0 T, major radius R¼ 10.0 m, minor radius

a¼ 1.0 m, and helical ripple at the plasma edge �h0 ¼ 0:1.

Calculations were carried out for central ion temperatures of

Ti0 ¼ 8 keV; Ti0 ¼ 10 keV, and Ti0 ¼ 12 keV. The ratios of

the radially averaged fusion reactivity to the value for a

Maxwellian were calculated for values of the parameter d ¼
�ef f ð1Þ from 2:5� 10�4 to 3:0� 10�2.

A check on the convergence in time of the solution is

provided by the steady-state flux conservation condition. By

omitting the time derivative in Eq. (2), multiplying it by

q E1=2, and integrating over q from q0 to 1 and over E from

E1 to E2, using the boundary conditions, we obtainð1

q0

q dq ~niðqÞ Hðy1=2Þ f þ ~TiðqÞ
@f

@E

� �� �
E¼E1

; (17)

¼
ðE2

E1

E1=2dE DsbðE; qÞ
@f

@q

� �
q¼1

: (18)

The meaning of this equation is as follows: In a steady state,

the ion flux coming into the tail region at the lower energy
FIG. 1. Normalized superbanana diffusion coefficient as a function of the

dimensionless energy E and radius q.
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boundary E ¼ E1 equals the ion flux leaving at the plasma

edge, q ¼ 1. This condition was found to be reasonably well

satisfied at a time ~t ¼ 10:0 and the steady-state distribution

function was evaluated at that time.

The computed energy distributions as functions of

energy E in keV at q ¼ 0:2, for various values of d and the

Maxwellian, are shown in Figure 2. Also shown is the D-T

fusion reaction rate E rðEÞ, defined in Sec. V. This figure

shows how the tail ions which are needed for fusion are

increasingly depleted, for increasing d.

The computed solutions for f for Ti0 ¼ 10 keV at q ¼ 0:2
and at q ¼ 0:8, for d ¼ 0:01, and the Maxwellians at q ¼ 0:2
and at q ¼ 0:8 are shown in Figure 3. This figure shows that

the density of ions which contribute most to the fusion reactiv-

ity is reduced by superbanana diffusion for small and larger q,

when compared with the Maxwellians.

V. FUSION REACTIVITY

The D-T fusion cross section fit given by Bosch and

Hale11 was used. This has the form

rðEÞ ¼ SðEÞ
E

expð�BG=E1=2Þ (19)

in units of 10�27 cm2, where E is the energy in the center-of-

mass frame, in keV. Here, S is a slowly varying function of

E, with several fit parameters. The exponential is the tunnel-

ing probability, with BG the Gamov constant. The values of

the fit parameters and BG for the D-T reaction as given by

Bosch and Hale were used.

The radially local fusion reactivity is given by integrat-

ing rðEÞv over energy, where v is the speed, multiplied by

the computed distribution function f ðE=Ti0; qÞ. After averag-

ing over q, we obtain

hrvi ¼ C

ð1

0

q dq
ð1

0

dE E rðEÞ f ðE=Ti0; qÞ; (20)

where C is a constant. The fusion reaction rate mentioned in

Sec. IV is defined as the factor E rðEÞ in the integrand. In

evaluating this integral, contributions from energies less than

E1 and greater than E2 were neglected. The fusion reactivity

for a Maxwellian is denoted by hrviM. The radially averaged

fusion reactivity divided by the radially averaged value for a

Maxwellian, hrvi=hrviM, as a function of d, for three differ-

ent ion temperatures is shown in Figure 4. This figure shows

that the fusion reactivity is reduced by superbanana diffusion

when compared with a Maxwellian, for the parameters used

in the calculation. The reduction is roughly a factor of 0.5

for all three ion temperatures.

VI. SUMMARY AND CONCLUSIONS

The steady-state solution of the Fokker-Planck equation,

Eq. (2), was obtained numerically using the initial and bound-

ary conditions given by Eqs. (12)–(16). The steady-state solu-

tion was used to calculate the radially averaged D-T fusion

reactivity. It was found that the fusion reactivity is reduced by

superbanana diffusion when compared with a Maxwellian, by

roughly a factor of 0.5 for the parameters used in the calcula-

tion, for central ion temperatures Ti0 ¼ 8 keV; 10 keV, and

12 keV. The effect is not as drastic as indicated by simple

arguments based on the 1=� regime because of the existence

of the � regime and radial profile effects.
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FIG. 2. Computed energy distributions as functions of energy E in keV,

along with the Maxwellian and the D-T fusion reaction rate E rðEÞ, at

q ¼ 0:2, for Ti0 ¼ 10 keV and for various values of d (increasing away from

the Maxwellian) from 2:5� 10�3 to 2:0� 10�2.

FIG. 3. Computed solutions at q ¼ 0:2 and at q ¼ 0:8, for d ¼ 0:01, and the

Maxwellians (corresponding to d ¼ 0:0).

FIG. 4. Radially averaged fusion reactivity divided by the radially averaged

value for a Maxwellian, hrvi=hrviM , as a function of d, for three different

central ion temperatures.
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