
Spatio-temporal evolution of the L fi I fi H transition

K. Miki,1 P. H. Diamond,1,2,3 €O. D. G€urcan,4 G. R. Tynan,2 T. Estrada,5 L. Schmitz,6

and G. S. Xu7

1WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333, South Korea
2Center for Momentum Transport and Flow Organization, University of California, San Diego,
California 92093, USA
3Center for Astrophysics and Space Science, University of California, San Diego, California 92093, USA
4LPP, Ecole Polytechnique, CNRS, France
5Laboratorio Nacional de Fusi�on, Asociaci�on Euratom-CIEMAT, Madrid, Spain
6University of California, Los Angeles, California 90095, USA
7Institute of Plasma Physics, Chinese Academy of Science, Hefei, China

(Received 10 July 2012; accepted 4 September 2012; published online 19 September 2012)

We investigate the dynamics of the low(L)! high(H) transition using a time-dependent, one

dimensional (in radius) model which self-consistently describes the time evolution of zonal flows

(ZFs), mean flows (MFs), poloidal spin-up, and density and pressure profiles. The model represents

the physics of ZF and MF competition, turbulence suppression via E� B shearing, and poloidal

flows driven by turbulence. Numerical solutions of this model show that the L! H transition can

occur via an intermediate phase (I-phase) which involves oscillations of profiles due to ZF and MF

competition. The I-phase appears as a nonlinear transition wave originating at the edge boundary

and propagates inward. Locally, I-phase exhibits the characteristics of a limit-cycle oscillation. All

these observations are consistent with recent experimental results. We examine the trigger of the

L! H transition, by defining a ratio of the rate of energy transfer from the turbulence to the zonal

flow to the rate of energy input into the turbulence. When the ratio exceeds order unity, ZF shear

gains energy, and a net decay of the turbulence is possible, thus triggering the L! H transition.

Numerical calculations indicate that the L! H transition is triggered by this peak of the normalized

ZF shearing. Zonal flows act as “reservoir,” in which to store increasing fluctuation energy without

increasing transport, thus allowing the mean flow shear to increase and lock in the transition. A

counterpart of the L! I! H transition, i.e., an L! H transition without I-phase, is obtained in a

fast power ramp, for which I-phase is compressed into a single burst of ZF, which triggers the

transition. Effects of neutral charge exchange on the L! H transition are studied by varying ZF

damping and neoclassical viscosity. Results show that the predicted L! H transition power

increases when either ZF damping or viscosity increase, suggesting a link between recycling, ZF

damping, and the L! H threshold. Studies of fueling effects on the transition and pedestal

structure with an emphasis on the particle pinch are reported. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4753931]

I. INTRODUCTION

Understanding of L! H transition physics is crucial to

a successful ITER. The L! H transition to a state of the

higher confinement was discovered at ASDEX.1 Understand-

ing of the power requirement for accessing the H-mode is so

essential that intensive experimental surveys of threshold

power in various physical parameters have been carried

out.2,3 The power threshold tends to have different behavior

in lower and higher density regions. However, a successful

theoretical framework within which to understand the physics

of the L! H transition and a theoretical prediction of the

threshold power have not yet been realized, due to uncer-

tainty concerning the trigger of the transition. The trigger of

the transition has not been specified yet. To determine the

threshold power scalings, a physical understanding of the

trigger is necessary.

In experiments, prior to the L! H transition, as power

slowly increases, several kHz quasi-periodic evolution of the

Er (radial electric field) was first observed in ASDEX-

Upgrade, and referred to as a dithering cycle.4 Instead, with a

fast heat power ramp rate, only a few such cycles appear,

while with a slow ramp rate, or at steady power, an extended

series of limit-cycle oscillations is observed. This quasi-

periodic behavior prior to the L! H transition is also seen in

JET,5 DIII-D,6 etc.

Theoretically, the L! H transition is regarded as a

transport bifurcation, which is related to E� B flow shear

suppression by multiple types of flows: zonal flow (ZF) and

mean flow (MF).7 Here, mean E� B flow (MF) hVEi is gen-

erated mainly by diamagnetic flow due to global pressure and

density profiles, while zonal flow VZF is fluctuation driven

and has a mesoscale radial structure. The mesoscale spectral

range is Dc < lmeso < Lp, where Dc � qi is the turbulence

correlation length and Lp is a system size characterized by

pressure scale length. The mesoscale range may be typified

by the geometric mean of the micro and macro scales,8

lmeso �
ffiffiffiffiffiffiffiffiffiffi
DcLp

p
. However, we emphasise that “mesoscale”

refers to a range of the scales and not a single scale! There-

fore, ZF and MF shearing should be distinguished.
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Shear enhanced decorrelation of turbulent fluctuations

has been proposed as a mechanism for confinement improve-

ment and turbulence suppression.9,10 A mean field predator-

prey model originally describes the interplay between turbu-

lence fluctuation and the diamagnetic-driven E� B mean

flow, exhibiting self-consistency, i.e., the turbulence fluctua-

tion and the mean flow amplitude are closely related to, and

are determined by, one another.11 Reference 12 extended the

self-consistent predator-prey system, coupling turbulence

with the ZF, using the conservation of the wave action with

the flow shear.

Reference 13 proposed a predator-prey model describing

interacting ZF and MF shear suppression of turbulence, a

simplified coupling of the mean flow shear and pressure gra-

dient by radial force balance, and MF-ZF competition. The

model recovers an L-H transition triggered by ZF shearing

and a pre-transition limit-cycle oscillation (LCO) due to

interplay among turbulence, ZF, and MF. The interplay

occurs on a slow zonal flow damping time scale and mani-

fests a phase delay between turbulence and shearings. Here,

this model study finds that ZF shearing is an important ingre-

dient in the L! H transition, because ZF mediates the tran-

sition, reduces turbulence level, enhances MF evolution, and

thus regulates the power threshold. When the importance of

the ZF to transition was noticed, it was realized that since

zonal flow is fluctuation driven, ZF can trigger the transition

but cannot sustain it. Thus, the transition intrinsically must

be a two predator (ZF and MF) and one prey problem. Mean

flow shear affects the fluctuation-driven Reynolds correla-

tion, as well as fluctuation intensities. In this two predator-

one prey model, the zonal flow triggers the transition, while

the mean flow “locks in” to the H-mode state.

TJ-II has identified the physical mechanism behind the

L! H transition from the limit-cycle oscillation of Er inter-

acting with turbulent fluctuations.14 The experimental results

clearly show limit-cycles in the Er and turbulence fluctua-

tions in phase space, suggesting a strong similarity to the

model of Ref. 13. Other experimental devices also have stud-

ied the pre-transition limit-cycle oscillation, which is

referred as to intermediate (I)-phase in NSTX, ASDEX-

Upgrade, DIII-D, and EAST.15–18

Note that a dynamical system analysis of the model of

Ref. 13 indicates that the LCO occurs around a saddle (struc-

turally unstable) fixed point, referred as to the transient

state.19 This should be distinguished from L! H! L peri-

odic transition, as is previously discussed in Ref. 4. This is

because the transient state LCO is defined by the feedback

loop of turbulence and ZF shearing, and thus the ZF damping

determines the time scale of the oscillation.

With regard to the pre-transition LCO, spatio-temporal

structure of this sort has now been identified in DIII-D17 and

TJ-II.20 A Doppler backscattering system (DBS) has meas-

ured local density fluctuation and total E� B flow, with high

spatial and temporal resolution.17 This measurement has pro-

vided a new picture of the I-phase as an evolving flow layer

structure of LCO. The LCO structure resembles a propagat-

ing wave. Density fluctuations are peaked outside of the

separatrix and are reduced across separatrix in an around

2–3 cm wide layer. Via alternative methodology, propagating

structure has been also elucidated by simultaneous measure-

ment at two radial locations, with a two-channel Doppler re-

flectometer in TJ-II.20 This study identified two-way

propagation of Er oscillations depending on the measured

line density, i.e., some cases of lower line density ð2�
25Þ � 1019 m�3 show outward propagation, and some partic-

ular cases of higher line density 3� 1019 m�3 exhibit inward

propagation. The outward propagation speed is the largest at

the innermost radial position and gradually decreases as the

oscillation reaches the edge Er shear position. This phenom-

enon may be linked to the radial spreading of the turbulence

from the plasma core to the edge barrier.21

To relate these findings to the two predator-one prey hy-

pothesis of ZF trigger and mediation, at least a one space

dimension version of the multi-predator-prey model13 is nec-

essary here. Such a one-dimensional model can predict the

spatio-temporal evolution of the pedestal through the L! H

transition, as well as the spatial structure of the LCO in

I-phase. Note that since no “first principles” simulation has

ever successfully recovered the L! H transition, reduced

models are the only option. Also, in the event that useful

“first principles” simulations become available in the future,

reduced models will still be necessary to extract the essence

of the transition physics—i.e., to distill the lesson learned.

In this paper, we present novel theoretical results on the

spatio-temporal dynamics of L! H transition, with special

emphasis on the role of ZFs in the trigger process. We pres-

ent comparison to several recent experimental results. We

extend the earlier transition models13 to develop a 5-field

reduced mesoscale model which evolves turbulence inten-

sity, zonal flow shear, pressure and density profiles, and

mean poloidal mass flow in both radius and time. The mean

E� B velocity shear hVEi0 is calculated via radial force bal-

ance using density and pressure profiles and poloidal flow.

We present evidence that the ZF can trigger the transition.

To support the hypothesis that the ZF is fundamental to

the transition, we explore the sensitivity of the L! H

threshold to the ZF damping. As ZF shearing can trigger the

L! H transition and downshift the power threshold, larger

ZF damping should weaken the ZF shearing and turbulence

suppression and upshift the power threshold. Higher ZF

damping can result from higher neutral charge exchange

(CX). An increase of the neutral CX friction can be caused

by wall saturation, increased re-cycling, etc., leading to

increased ZF damping and increased neoclassical poloidal

flow viscosity. This damping acts in addition to that originat-

ing from ion-ion collisions. This indicates that the wall

physics and recycling can alter the L! H power threshold

and that high edge neutral density is unfavorable to transi-

tion.22 Based on this hypothesis, we examine how ZF medi-

ates the L! H transition in higher neutral CX cases.

We also study how the early stages of pedestal forma-

tion depend upon particle fueling. As particle fueling origi-

nates at the edge boundary, a particle pinch effect must be

considered, so as to allow build-up of the density profile.

However, the effects of the particle pinch on L! I! H

transition and pedestal formation have not been discussed.

Related to the particle pinch, the deposition layer width is

another comparable factor. The deposition layer width is
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really set by the fueling method, i.e., pellet injection or gas

puffing. Thus, we here investigate two issues regarding fuel-

ing: (i) how the particle pinch affects L! H transition dy-

namics and (ii) how the fueling deposition width affects the

pedestal structure.

The remainder of this paper is organized as follows. In

Sec. I, we introduce the reduced 5-field mesoscale model,

the related physics, and the initial conditions and parameters.

In Sec. II, we present basic numerical results of the L! H

transition and comparison to experimental results. In Sec.

III, we discuss numerical results regarding the power thresh-

old study and pedestal profiles. Here, we also suggest impli-

cations for experiments based on the results. In Sec. IV, we

conclude and discuss remaining issues.

II. STRUCTURE OF THE MODEL

To better understand L ! I! H transition dynamics,

we propose a theoretical model as an extension of the two

predator-one prey system13 to treat dynamics and evolution

in the radial dimension r. The model describes space-time

evolutions of turbulence intensity (I), zonal flow shear

energy (E0 ¼ V0ZF
2
), pressure (p) and density (n) profiles, and

mean poloidal mass flow (hvhi). These quantities are aver-

aged over fine scales and fast times. Thus, a priori, the spa-

tial scale is longer than qi and the evolution scale is slower

than drift wave time x�1
� � ðcs=aÞ�1

, in order to satisfy the

scale separation requirement for wave kinetics, which is the

foundation of our reduced model.7 The basis is the following

predator-prey model with one prey (turbulence intensity) and

two predators (ZF and MF shearings):

@tI ¼ IðcL � Dx I � a0E0 � aV EVÞ þ vN@rðI@rIÞ; (1)

@tE0 ¼
a0 E0I

1þ f0EV
� cdampE0: (2)

Here, we assume that turbulence originates from the ion

channel; the first term on the r.h.s. of Eq. (1) represents turbu-

lence generation by ion temperature gradient (ITG) mode via

linear instability, where cL ¼ cL0ðcs=RÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR=LTÞ � ðR=LTÞcrit

p
is the local growth rate of turbulence intensity, with a criti-

cal temperature gradient parameter ðR=LTÞcrit, cs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti0=mi

p
is the ion sound speed, Ti0 is a reference ion tem-

perature, mi is the ion mass, R and a are major and minor

radii, respectively, and LT ¼ jd ln T=drj�1
is the scale length

of the ion temperature gradient. The temperature profile is

calculated from T¼ p/n. The model is flexibly adaptable to

other instabilities, by changing the definition of cL, to that for

the trapped electron modes, etc. The second term on the

r.h.s. of Eq. (1) represents the nonlinear damping by self-

saturation of turbulence due to local spectrum broadening,

the increment parameter for which is given by Dx. The third

and fourth terms represent turbulence suppression due to ZF

and MF shearing, respectively. There a0 � sac is a shearing

coupling coefficient proportional to the auto-correlation time

between turbulence and zonal flow group propagation,11,23

and aV is the shearing coupling coefficient between turbu-

lence and MF shear. The detailed derivation of the shearing

coupling parameters is discussed in Appendix A. The fifth

term of the r.h.s. of Eq. (1) represents the nonlocal turbulence

spreading,21 where the turbulent thermal diffusivity is

vN � vN0ðq�c2
s=aÞ, and we assume turbulence spreading is dif-

fusive with D � vN � DGB.24

The first term on the r.h.s. of Eq. (2) represents turbulent

Reynolds drive, with enhancement of decorrelation of drift

wave propagation by a MF shear, which enters the cross

phase in the Reynolds stress. f0 represents the inhibition of

zonal flow growth by MF shear due to weakening of the

response of drift wave spectrum to a seed ZF.13 The deriva-

tion of the effect on ZF shearing by MF shear is summarized

in Appendix B. The second term on the r.h.s. of Eq. (2) repre-

sents damping of ZF shear, where cdamp is the ZF damping

rate originating from ion-ion collisionality and also neutral

CX. cdamp ¼ cdamp;0�ii=R and cdamp;0 ¼ 1þ �CX=�ii, where

�ii is the ion-ion collision frequency and �CX is neutral CX

friction. Here, we neglect the dependence of the neutral CX

friction on the density profile, for simplicity. The sensitivity of

ZF damping to ion collisionality has been elucidated by direct

numerical simulation (DNS) using the gyrokinetic equation,

e.g., see Ref. 25. EV ¼ hVEi02 is MF shear energy. The MF

shear is obtained from the radial force balance equation. To

separate the evolution of mean flow from that of zonal flow,

we assume that pressure and density profiles should evolve on

time scale much slower than zonal flows. This is due to the

fact that ZF is distributed throughout the mesoscale spectrum

(i.e., l �
ffiffiffiffiffiffiffiffiffiffi
DcLp

p
; s �

ffiffiffiffiffiffiffiffiffiffi
DcLp

p
=cs < Lp=cs), while MF are

macroscale (i.e., l � Lp).

We obtain cL and EV from the global profiles, p and n.

The evolution of the pressure and density profiles are given

by the following one-dimensional transport equations with

external sources:

@tpþ ð1=rÞ@rðrCpÞ ¼ @rH; (3)

@tnþ ð1=rÞ@rðrCnÞ ¼ @rS: (4)

Here, H and S are the external heat and particle source flux

profiles, respectively, given by

@rH ¼ Qa exp � r2

2L2
h;dep

 !
; (5)

@rS ¼ Ca
a� r þ da

L2
dep

exp �ða� r þ daÞ2

2L2
dep

" #
; (6)

for which typical profiles are illustrated in Fig. 1. Note that

source is flux-driven both for particles and heat. The heat

flux H is located in the core with the amplitude Qa, while the

particle flux S is fueled in the edge region with amplitude

Ca, the deposition width Ldep, and the shift of a gaussian

peak from the edge, da.

Cn and Cp are given by the following equations, consist-

ing of diffusive and convective (pinch) terms:

Cn ¼ �ðDn:t: þ D0Þ@rnþ Vnn; (7)
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Cp ¼ �ðvn:t: þ v0Þ@rp: (8)

Here, Dn:t: and vn:t: are non-turbulent particle and heat diffu-

sivities in H-mode, respectively, corresponding to the neo-

classical transport. D0 and v0 correspond to turbulent particle

and thermal diffusivities of the electrostatic turbulence,

respectively given by

D0 ¼ v0 ¼
scc2

s I

1þ athVEi
02
: (9)

Note that sc is the correlation time of turbulence and at is a

cross-phase modification by mean flow, normalizing the MF

shear hVEi02. Here, we assume the particle and the heat fluxes

have the same basic correlation time scale, i.e., we neglect

possible differences in cross-phases of the diffusivities, for

simplicity. The mean flow shear suppression factor at also

appears in Refs. 24, 26, and 9. As low b is assumed, there is

no magnetohydrodynamics (MHD) activity—edge localized

modes (ELMs), etc., after the development of the pedestal.

Describing such evolution is beyond the scope of this paper.

We thus consider only electrostatic turbulence here.

Vn is the particle pinch velocity,27 given by

Vn ¼ �Vn0ðDn:t: þ D0Þ
2

R
þ 1

LT

� �
; (10)

where the first term of the latter set of parenthesis on the

RHS of Eq. (10) represents a turbulent equipartition (TEP)

pinch28 and the second term is a thermodiffusive pinch.29,30

Note that both pinch velocities are inward for ITG turbu-

lence. Note also the total particle flux could be negative, at

least transiently, until the density gradient steepens in H-

mode. This is because a large heat flux can drive a strong

inward density pinch via the ITG mode. The particle pinch

consists of the TEP and thermodiffusive pinch,

Vn ¼ VTEP þ VTh. The thermodiffusive pinch is proportional

to the turbulence intensity, as given by VTh / �j~/
2jjrTj.

Since jrTj � Q=v follows, where Q is the heat flux and v is

the local heat diffusivity, we have VTh � Q. Thus, Cn < 0 is

possible if sufficient heat flux is carried. This has been

observed, i.e., probe studies of particle flux show cross phase

of Vr and n such that total flux is inward.31 Note that this ob-

servation applies to the H-mode pedestal and not to the L-

mode preceding the transition. Of course, the particle pinch

causes density profile peaking, so roughly rn=n � V=D. We

do not include a heat pinch in the pressure evolution, because

the heat source is assumed to be applied in the core, and we

are not concerned with global temperature profile structure.

By coupling toroidal and parallel force balance equa-

tions, we obtain the time evolution of poloidal mass flow,32

� @hvhi
@t
¼ B

nmi
hr � ðêhP

$
turbÞi þ BlðneoÞðhvhi � hvðneoÞ

h iÞ;

(11)

where B is a toroidal magnetic field. The first term in the

r.h.s. represents poloidal spin-up driven by turbulence

through the stress tensor, which may be replaced with radial

divergence of the Reynolds stress through the Taylor iden-

tity. lðneoÞ ¼ lðneoÞ
0 �ii½qðrÞ�2R2 is the neoclassical poloidal

viscosity, qðrÞ is the safety factor, lðneoÞ
0 ¼ l00ð1þ �CX=�iiÞ,

and l00 is calculated from the energy weighted momentum

equation.33 Here, we assume the neutral CX friction can be

added to the ion-ion collisionality in the neoclassical

poloidal viscosity lðneoÞ, as well as the ZF damping.

hvðneoÞ
h i ¼ �ðl01=l00ÞLðwÞBh ’ �1:17rT, given by Ref. 33,

is the neoclassical poloidal flow velocity. Assuming slab ge-

ometry and constant B, we simplify Eq. (11) to

@hvhi
@t
¼ �a5

cL

x�
c2

s

@I

@x
� lðneoÞ

0 �iiq
2R2 hvhi � 1:17cs

qi

LT

� �
;

(12)

We here use cL denoted in Ref. 32. This is the same as used in

Eq. (1) of this model and x� � cs=Ln � cs=a is fixed. Note

that the contribution from the zonal flow shearing to the Reyn-

olds drive is neglected here, due to the scale separation

assumption.

The E� B mean flow shear hVEi0 is related to the den-

sity and pressure gradients, the second derivative of the pres-

sure profile, and the mean poloidal mass flow hvhi by the

radial force balance equation,

hVEi0 ¼
1

eB
� n0p0

n2
þ p00

n

� �
þ a

�
vjj
qR

�0
� hvhi0

� �
; (13)

which can be rewritten as

hVEi0 ¼ qicsL
�1
p ð�L�1

n þ L�1
p0 Þ � hvhi0; (14)

where Lf ¼ ðd ln f=drÞ�1
for f ¼ n; p; p0. Here, the first term

in Eq. (13) corresponds to diamagnetic shearing, propor-

tional to pressure and density gradient. The second term is

the pressure profile curvature, proportional to the second de-

rivative of pressure profile. The pressure profile curvature is

often dropped because of difficulty in the analyses (e.g., Ref.

26), but some references discuss effects of the pressure

Heat source

Particle source

FIG. 1. Profiles of heat (solid) @rH and particle (dotted) @rS sources in the

case with Lh;dep=a ¼ 0:15, da=a ¼ 0:0, Ldep=a ¼ 0:10, and arbitrary Qa and

Ca. The heat source is localized in the core. The particle source is localized

at the edge with a given, fixed deposition width.
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profile curvature on the transition.34,35 The profile curvature

term becomes important especially when there is a corner in

the profile. At the top of the pedestal in the H-mode profile,

there necessarily must be a corner, and thus the profile

curvature is large. How the pressure curvature evolves

through L! H transition is not yet clear. Therefore, we here

keep this term and investigate its evolution. The forth term

corresponds to a contribution from the mean poloidal mo-

mentum. Here, we neglect the toroidal momentum of the

third term in Eq. (13), for simplicity. This effect likely is

essential for internal transport barrier (ITB) formation,

however.36

Note that this model can be reduced to the local

predator-prey model of Ref. 13 with the following simplifi-

cation. In Eqs. (1) and (2), neglecting the nonlocal effect

(vN ¼ 0), and letting cL ¼ N , where N / ð�dp=drÞ, we

obtain the evolution equations for turbulence intensity and

zonal flow shearing. These correspond to Eqs. (6) and (7)

in Ref. 13. Using the simplified radial force balance of Eq.

(14), assuming a constant temperature profile, neglecting

the second derivative and toroidal and poloidal momentum,

we obtain hVEi0 ¼ dN 2
. Reference 13 described the evolu-

tion of N by the expression @tN ¼ Q� ðc1 þ c2IÞN in

Eq. (3). There Q is the heat source and c1 and c2 are the

collisional/residual and turbulent transport coefficients,

respectively.

A. Parameters and boundary conditions

Finally, we obtain the 5-field (I, E0, p, n, hvhi) equations

(Eqs. (1)–(4) and (12)) and the radial force balance equation,

Eq. (13). We numerically solve these equations, using a fi-

nite difference method in radial space, and an implicit

method of lines for the time integration, with the following

conditions and parameters.

The simulation region is a cylindrical, one-dimensional

space between r¼ 0 at core and r¼ a at the edge. Boundary

conditions are the following, simplest set. For pressure and

density profiles, we take

pðr ¼ aÞ ¼ 0:01; nðr ¼ aÞ ¼ 0:1;

p0ðr ¼ 0Þ ¼ n0ðr ¼ 0Þ ¼ 0;

p000ðr ¼ 0; aÞ ¼ n000ðr ¼ 0; aÞ ¼ 0:

Here, p and n are normalized by the reference quantities

n0 ¼ 1020½m�3� and p0 ¼ Ti0n0 ¼ 1 ½keV� � 1020 ½m�3�,
respectively. We apply free boundaries at the cores of p and

n but fixed boundaries at the edge. For the second derivatives

of p and n at the edge, we impose the free boundary condi-

tions, thus the third derivatives are also set to zero. We

assume no interaction between the edge and scrape-off-layer

(SOL) region and use a simple boundary condition. We

believe that the free-forced boundary condition on the sec-

ond derivative is the simplest applicable one. The simple

boundary condition is consistent with experimental results,

since quantities at the last closed flux surface (LCFS) are

mostly constant during the L! H transition in experiments.

Here, we neglect any explicit modeling of SOL region

ðr > aÞ. If we go beyond the free boundary condition, a sep-

aratrix SOL-edge model is necessary to match to. This is

beyond the scope of this paper and will be addressed in

future work.

Note that we need to deal with the poloidal asymmetry

and X-point structure in a complete model. This requires

modelling of the SOL flows and the effect of the edge bound-

ary condition. In the present model, we simply assume a sim-

ulation box inside the LCFS and a fixed boundary at the

edge. We present further discussion of this issue in Sec. IV.

The study of detailed models will be pursued in the future.

For turbulence intensity, ZF, and mean poloidal flow,

we impose

I0ðr ¼ 0Þ ¼ I0ðr ¼ aÞ ¼ E00ðr ¼ 0Þ ¼ E00ðr ¼ aÞ
¼ hvhi0ðr ¼ 0Þ ¼ hvhi0ðr ¼ aÞ ¼ 0:

The other parameters we used in this numerical simulation

are the following: The amplitude of particle flux source Ca

is held constant at Ca ¼ 10�4. The strength of heat flux

power Qa ramps linearly from 1:0� 10�4 to 3:2� 10�2, af-

ter reaching initial equilibrium from arbitrary initial condi-

tions. Here, Ca and Qa are normalized by ðcsn0Þ and ðcsp0Þ,
respectively.

The ion-ion collision frequency, �ii,
37 normalized by the

ion cyclotron frequency xci ¼ eB=mi, is

�ii

xci
¼ n0Z4e4 ln K

31=26p�2
0m

1=2
i T

3=2
i0

eB

mi

� ��1

: (15)

Here, we assume a single hydrogen ion, Z¼ 1, A¼ 1,

e¼1:6�10�19½C�, K¼20, B¼ 3:5½T�, mi ¼ 1:67� 10�27½kg�,
�0 is the dielectric constant of vacuum, and Ti0 ¼ 1 ½keV� is a

reference ion temperature.

For the non-turbulent particle and thermal diffusivities

in H-mode, we use the following thermal diffusion coeffi-

cients in the banana region:

vTi ¼ �
�3=2
t ½qðrÞ�2q2

i �ii; (16)

Die � ðme=miÞ1=2vTi; (17)

where me is the electron mass. We set the safety factor

(q) profile, qðrÞ ¼ 0:95þ 2:0� ðr=aÞ2. Here, the transport

in H-mode should be related to the neoclassical transport,

(vTi and Die, respectively), and other residual turbulence

transport in H-mode. To model the non-turbulent transport,

we apply the enhancement parameters vn:t: ¼ 30vTi and

Dn:t: ¼ 15vTi, for the purpose of numerical convenience.

With only ITG turbulence, we could not obtain proper initial

profiles from the time evolution in the arbitrary initial condi-

tion, in the case with lower or purely neoclassical vTi and

Die. To obtain correct initial equilibria, some modest residual

particle diffusion is necessary to control the density gradient.

The actual residual particle transport in the pedestal is not

yet understood and remains a topic of active research. This

set of the parameters still retains the necessary qualitative

properties, since vn:t: > Dn:t:, v0 � vn:t:, and D0 � Dn:t: are

satisfied.
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Here, we apply a digital filter to the 5-field evolutions in

each time step for the purpose of smoothing or compensating

irrelevant higher radial wavenumber oscillations.38,39 The

digital filter can correspond to hyper-viscosities in the field

evolutions, which determine a minimum scale size of the

mesoscale profile structure. The scale is determined by finite

Larmor radius effects or neoclassical polarization shielding,

based on gyrokinetic theory. We here avoid a specified esti-

mation of the hyper-viscosities, but retain the essence of the

model by using a digital filter with an arbitrary resolution.

We set the digital filter so as to maintain the long wavelength

radial structure D�qi and to effectively dissipate the short

wavelength structure D�qi. This treatment also ensures the

radial scale separation law of the mesoscale envelope from

the turbulence scales.

Other parameters are q�¼ ðqi=aÞ ¼ 0:01, �t¼a=R¼0:25,

Lh;dep=a ¼ 0:15, Ldep=a ¼ 0:10, da=a ¼ 0, sc ¼ 1:0ða=csÞ,
at¼1:0ða=csÞ2, cL¼Dx ¼10�2ðcs=RÞ, a0¼1:0�102 ffiffiffiffiffi

q�
p

ðcs=aÞ, aV¼2:0�10�2 ffiffiffiffiffi
q�
p ðcs=aÞ, f0¼102ða=csÞ2, ðR=LTÞcrit

¼3:7, cdamp¼1:0�ii=Rðcs=aÞ, vN¼0:5q�ða=csÞ2, l00¼1:0a�2,

a5 ¼ 5:0� 103, and Vn0 ¼ 1:0. Radial space and time scales

are normalized by the minor radius a and the characteristic time

of the drift wave x�1
� ¼ ða=csÞ, respectively. The radial grid

size is Dr=a ¼ 1=400, and the time step is Dtðcs=aÞ
¼ 0:125� 0:5.

III. BASIC STUDIES OF L fi I fi H TRANSITION
DYNAMICS

With the parameters described above, in Fig. 2, we pres-

ent a numerical result which shows an L! I! H transition

using a slow power ramp. As can be seen clearly, there are

three distinct stages. The early stage, L-mode, is identified as

a state with slowly growing turbulence, self-regulated by

zonal flows. In the L-mode, as MF shearing is weak, the inter-

action between ZF and MF shearing is not significant, i.e., lit-

tle decorrelation of ZF shearing by MF shear appears (see

also Fig. 10(c)). As the heat flux through the edge increases

with power, the system evolves into the next stage, namely

the I-phase. The I-phase, which starts at t ¼ 2:16 �105ða=csÞ,
is characterized by the presence of nonlinear shearing waves,

nucleated near the edge boundary and propagating inward

while also expanding outward. The nonlinear shearing wave

structure is consistent with that observed in DIII-D.17 Local

phase portrait of the nonlinear waves appears with the LCOs

observed in other experiments. These are triggered by an

increase of ZF in the edge region (0:90 < r=a < 1:00). One

example of the local phase portrait is shown in Fig. 3, plotting

ZF energy E0 and MF shear energy EV in I-phase

(t ¼ 2:4� 3:2ð�105ða=csÞ)) at the edge region, r/a¼ 0.975.

The plots show quasi-periodic behavior with a certain phase

relation. During the I-phase, a radially coherent phase shift

among local values of turbulence, ZF, and MF can be identi-

fied. Once the ZF shear increases, the MF follows the behav-

ior of the ZF shear. At t ¼ 3:53� 105ða=csÞ, the L! H

transition occurs. At the transition, the I-phase terminates

abruptly with the quench of the edge turbulence on a fast time

scale and that of ZF in a slower time scale. The time scale

that ZF decreases after the transition corresponds to the ZF

damping rate. On the other hand, some weak turbulence and

ZF persist on the pedestal shoulder, even after the transition.

Note that here, the actual transition time scale is very short,

even for a slow power ramp! During the transition, the pedes-

tal begins to expand inward, as the MF shear grows rapidly.

The transition time is a mixture of turbulence transport and

neoclassical transport time scales.40 Crudely, it is estimated as

�1msec for DIII-D parameters. After the L! H transition,

the pedestal width still expands slowly inward and then satu-

rates at Dped � 0:10a in t > 3:6� 105ða=csÞ.
Fig. 4 shows a bird’s-eye view of the space-time evolu-

tions of turbulence intensity, ZF, and MF for the same case

FIG. 2. Spatio-temporal evolution of turbulence intensity I, (a) (b) ZF shear-

ing energy E0, and (c) logarithm of MF shearing energy lnðEVÞ as functions

of time t during a power ramp (2� 105 < t < 4� 105) and as a function of

radius (0:5 < r=a < 1:0). Three distinct stages, L-mode, I-phase (LCO), and

H-mode, are evident. In L-mode, turbulence and ZF grow self-consistently

from the edge region; In I-phase, extended space and time structure of turbu-

lence intensity, ZF, and MF appears. At the transition, turbulence and ZF

drop rapidly. After transition, decay of turbulence and ZF is seen, while

mean shear persists.

t=240000-320000(a/cs)
r/a=0.975

FIG. 3. Plots of ZF energy E0 versus MF shearing energy EV . Data points

are taken from t ¼ 2:4� 105ða=csÞ to t ¼ 3:2� 105ða=csÞ with each

Dt ¼ 8� 102ða=csÞ. (The number of plots are 100.) The plots exhibit the

limit-cycle oscillations. The propagating nonlinear waves are locally the

limit-cycle oscillations with a phase delay between different radii. The

filled circular plot denotes the final point at t ¼ 3:2� 105. It indicates that

the limit cycle rotates counterclockwise.
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as Fig. 2. We see that the LCO is a propagating nonlinear

wave of turbulence, ZF, and MF shear fields in the edge layer

around r=a > 0:85. The mean flow shear, representing the

profiles, oscillates during I-phase. This is likely related to the

oscillation of Da signal observed in experiments. The local

maximum of turbulence intensity peaks just prior to the

transition.

Fig. 5 shows time evolution of turbulence intensity, ZF,

and MF energies at various radial locations at the edge

region (r/a¼ 0.975, 0.950, 0.925). Inward propagation of

MF shear is identified. We notice that as the heat flux

approaches criticality, the LCO phase delay between I and

E0 increases from �p=2 to �p, while the nonlinear LCO pe-

riod increases, i.e., the cycle slows. Interestingly, this tend-

ency is seen in the local model13 and also in DIII-D.17 In the

DIII-D experiments in L-mode, no correlation of MF shear

and turbulence is seen. During the LCO a p=2 phase shift is

found, and the phase shift approaches �p at final H-mode

transition, as equilibrium flow shear quenches the Reynolds

stress.

Fig. 6 shows the evolution of MF and ZF shearings

through L! I! H transition, so as to compare with

recent experimental results. Fig. 6(a) shows the temporal

evolution of the diamagnetic shearing, i.e., xE�B;dia

¼ L�1
n L�1

p ðcsqiÞ. The diamagnetic shear oscillates with

growing amplitude in I-phase, then increases abruptly at

L! H transition. This is consistent with experimental

results.17 This indicates that pressure and density gradients

oscillate during I-phase, since the diamagnetic shear does.

The oscillation of the density gradient must be related to Da

signal oscillations in experiments.

FIG. 4. Three-dimensional color maps of the time evolution of (a) turbulence intensity I, (b) ZF energy E0, and (c) MF shearing energy lnðEVÞ as functions of

time t (during the slow power ramp regime (2� 105 < t < 4� 105)) and radius (0:5 < r=a < 1:0). These pictures show nonlinear waves propagating inward

from the edge layer as the transition develops. What locally appears as a limit cycle is actually a slice of propagating nonlinear wave in the edge layer.

time(a/cs)

(a)

(b)

(c)

inward propagation

FIG. 5. Time evolution of turbulence intensity I (blue solid line), ZF energy

E0 (green solid lines), and mean square MF shear EV (red bold lines) at vari-

ous radial location of (a) r=a ¼ 0:975, (b) r=a ¼ 0:950, and (c) r=a ¼ 0:925.

The arrow indicates inward propagation of the mean flow peaks. At constant

phase, the innermost radius leads in time, suggesting inward propagation.

(b)

(c)

r/a=0.975

α0E0/(γL-ΔωI)

αVEV/α0E0

L-H transition

(a) Ln
-1Lp

-1(csρi)

FIG. 6. Time evolution of (a) diamagnetic shearing (the first term of Eq.

(13)), (b) g, i.e., the ratio of turbulence energy transfer to the ZF, normalized

to the net energy input into the turbulence, and (c) the ratio of MF shear to

ZF shear, from the onset of I-phase at t ¼ 2:1� 105ða=csÞ to the L-H transi-

tion indicated at t¼ 3:5� 105ða=csÞ at the edge region r=a ¼ 0:975.

Throughout the I-phase, diamagnetic shearing oscillates with increasing am-

plitude. At the last cycle at t ¼ 3:5� 105ða=csÞ, ZF shearing is strongly

enhanced, and sufficient to quench the turbulence. Then the mean shear is

sufficient to lock in the transition.
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A. Studies of a ZF role in the L fi H transition:
Triggering

Next, we investigate how ZF shearing mediates the

L!H transition. In order to clarify the parameters which we

will use, it is useful to write a schematic set of coupled

predator-prey equations13,41 for turbulence and ZF, which are

a simplified version of Eqs. (1) and (2), neglecting mean flow

and nonlocal effects. These are

@I

@t
¼ ceff I � h~vr ~vhi

@vZF

@r
; (18)

@E0

@t
¼ h~vr ~vhi

@vZF

@r
� cdamp E0: (19)

Here ceff ¼ cLI � DxI2 is a total, effective growth rate,

including the gradient drive and nonlinear damping.

P? ¼ h~vr ~vhi
@hvZFi
@r

� a0IE0 (20)

is the Reynolds work of the fluctuations on the flow.

h~vr ~vhi � 6@vZF=@r indicates negative (i.e., ZF growth) or

positive (i.e., ZF damping) viscosity, respectively.

The obvious criterion for triggering the L! H transi-

tion is @I=@t < 0, with a positive phase between h~vr ~vhi and

@vZF=@r—i.e., negative viscosity which results in a net

decay of the fluctuation energy. In this case, the zonal flow

extracts energy from the turbulence faster than the turbu-

lence grows. This requires

g 	
h~vr ~vhi

@vZF

@r
ceffI

¼ a0E0

cL � DxI
> 1; (21)

which emerges as a natural figure of merit for the collapse

of the turbulence and the onset of transition. Note that g > 1

does not always guarantee triggering of the L! H transi-

tion. This is not a sufficient condition but is at least the nec-

essary condition to trigger the L! H transition by the zonal

flow and mean flow interaction. In Ref. 41, results from

“measurements” of g defined as P?=�neth~v2i, instead of ceffI,
were reported, where �net is the effective rate of energy input

into the turbulence during periods of weak ZF. Results indi-

cated that when g exceeds order unity, the L! H transition

is triggered in EAST experiments.41 This shows that the ZF

is fundamental to L! H transition, at least in those cases.

Thus, we here compare the experimental results with numeri-

cal results based on the model presented here.

Fig. 6(b) shows the time evolution of g, indicating that

peaks of the ZF shearing increase significantly close to L! H

transition, consistent with the analyses from the experiment.

This suggests that ZF shearing really becomes dominant just

prior to the L! H transition. Fig. 6(c) shows a time evolu-

tion of MF shearing normalized by the ZF shearing. The MF

shear starts to grow after the onset of the I-phase. In accord

with the LCO, the normalized MF shear oscillates with

growing amplitude. The size of this oscillation is largest just

prior to the L! H transition. After the final peak of the MF

shearing just prior to the transition, the MF shear rapidly

drops and then increases, crossing zero. Finally, in the

H-mode pedestal, the MF shearing becomes much stronger

than the ZF shearing.

Through Figs. 6(a)–6(c), we present the sequence for the

development of the transition. Initially, the MF shear rapidly

decreases and then increases in Fig. 6(c), followed by

peaking of g in Fig. 6(b), and then xE�B;dia increases rapidly.

The MF first peaks and then collapses to small value as L�1
p

drops. The ZF then peaks and extracts the energy from the

turbulence. L�1
p and L�1

n then increase rapidly as do the MF

and the xE�B;dia. This sequence of the events explicitly dem-

onstrates the causality of the transition! Noting that the peak
of g precedes the rapid increase of xE�B;dia, and the increase
of xE�B;dia must precede the decrease of Da in experiments,

we conclude that the peak of g, which is related to the ZF

shearing, is the trigger of the L! H transition.

The ZF plays a role of an energy reservoir, mediating

the transition by absorbing free energy without increasing

turbulent transport. The zonal flows act as short time storage
place for most or all of the fluctuation energy in a region of

the spectrum which causes no transport (i.e., n¼ 0). This

allows the mean flow shear to increase (due to profile steep-

ening), so the transition can develop. The actual L! H

transition occurs when the instantaneous LCO ZF shear is
sufficient to quench the turbulence by momentarily extract-
ing essentially all of the energy out of the turbulence, thereby
allowing rapid growth of the mean shear, which then locks
in the transition.

B. Studies of the general L fi H transition with a fast
ramp of heat flux

The rate of heat flux increase, related to the rate of

increase of power, can be another factor which determines

“the type of L! H transition.” We know that there are

actual cases for which the L! H transition occurs without
an I-phase. The answer to the question comes from consider-

ing the rate of the heat flux increase. Indeed, the I-phase was

only identified by carefully creating experiments operating

near the power threshold. To this end, we examine the case

with a faster power ramp, shown in Figs. 7(a)–7(c). In this

case, the LCO is compressed into a single burst of ZF, which

triggers L! H transition at t ¼ 2:7� 104ða=csÞ. For the sin-

gle burst scenario to apply the heat flux increase, time scale

must be shorter than the time scale of a single limit-cycle.

While turbulence is quenched immediately after the L! H

transition is triggered, the ZF is damped more slowly, in

accord with the modest ZF damping time(�c�1
ZF ). These fea-

tures seen in Figs. 7(a)–7(c) resemble those of TJ-II, shown

in Fig. 7 of Ref. 42. A small increase of the MF shearing in

accord with the burst of ZF in 0:65 < r=a < 1:0 and 2:3�
104ða=csÞ < t < 2:7� 104ða=csÞ is seen in Fig. 7(c). This

indicates that the ZF induces MF growth through turbulence

suppression.

We discuss the trigger of the L! H transition without

the I-phase, using the parameter g in Eq. (21). In Figs. 7(d)–

7(f), temporal evolutions of turbulence intensity I, ZF energy

E0, MF energy EV , the product quantities P? ¼ a0IE0, and

g ¼ a0E0=ðcL � DxIÞ are shown at a specific radial location

r=a ¼ 0:9625. To make clear the sequence of events
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occurring during the L! H transition, we denote vertical

lines (A) and (B) on Figs. 7(d)–7(f). At the time (A), i.e., just

prior to the L! H transition, MF shear crosses zero and

then exhibits a rapid increase. Simultaneously, the product

P? shows a peak, and g increases rapidly. At the time (B),

i.e., just at the time of L! H transition, turbulence drops

rapidly, so P? also drops proportional to the behavior of the

turbulence intensity. A single peak of g is also identified at

the time (B). The peak is due to an increase of ZF shearing

and also transient drop of cL. The transient drop of cL origi-

nates from the rapid decrease of L�1
T . The decrease of L�1

T

appears coincident with the decrease of MF shear at the time

(A). Thus, the sequence in which the L! H transition is

triggered here is consistent with the case with slow ramp,

seen in Fig. 6.

C. Basic properties of density, pressure, turbulence
intensity, zonal flow, and mean flow shear in L-mode,
I-phase, and H-mode

In this subsection, we show further analyses obtained

from the case with a slow power ramp. The condition is the

same as that in Fig. 2. Fig. 8 shows spatial evolutions of

density, pressure, and temperature profiles at typical times

of the L-mode, I-phase, and H-mode. Pedestal formation in

the H-mode is clearly recovered in the edge region,

0:9 < r=a < 1:0. Note that these profiles including pedes-

tals are not empirically specified, but rather evolve given

by the time evolution of the self-consistent theoretical

model.

In L-mode or I-phase, both heat and particle diffusivities

in the edge region are governed by turbulent transport, since

the relation Dn:t:; vn:t: 
 D0; v0 is satisfied. On the other

hand, in the H-mode pedestal, the diffusivities are governed

by the non-turbulent transport instead, due to the quench of

turbulence. Once the L! H transition occurs, the diffusiv-

ities in the pedestal region drop immediately. As a conse-

quence steep profile gradients are formed, and the MF shear

is rapidly excited. On the pedestal shoulder, residual turbu-

lence and ZF persist. They round off the profiles at the top of

the pedestal after the L! H transition, thus leading to for-

mation of a convex pedestal corner.

We focus on the profile in the edge region as seen in

Fig. 9. The pressure profile in I-phase at t ¼ 2:8� 105ða=csÞ
is not peaked in the edge region, compared to that in

L-mode. There is some enhanced turbulence because of the

decorrelation of ZF shearing by the MF shear, leading to

stronger turbulent transport. Judging from Fig. 5(a), at t
¼ 2:8� 105ða=csÞ in the edge region r=a > 0:95, turbulence

is most enhanced and thus the ZF and MF shear exhibit min-

ima. Therefore, the profile behaves like an L-mode, with

minimum flow shearing. For the contrary phase, at

t ¼ 2:72� 105ða=csÞ, turbulence is minimal, and the ZF and

MF shear are enhanced. Thus, a steeper gradient than that in

t(a/cs)

r/a
r/a

r/a

(a) turbulence

(b) ZF

(c) log(MF)

(d)

(e)

turbulence

MF
ZF

α0IE0

η

t(a/cs)

(f)

(A) (B)

FIG. 7. Spatio-temporal evolution of turbulence (a) I, (b) E0, and (c) lnðEVÞ as a function of time t during a fast power ramp 2� 104ða=csÞ < t < 4� 104ða=csÞ,
and radius (0:5 < r=a < 1:0). No LCO is seen. The I-phase LCO is compressed into a single burst of ZF at t ¼ 2:72� 104ða=csÞ. (d) Time evolution of turbu-

lence intensity I (blue chain line), ZF energy E0 (green solid line), and MF shearing energy EV (red dotted line). This figure shows that at the L! H transition

t ¼ 2:72� 104ða=csÞ, the turbulence quenches at a faster rate, the ZF increases before the transition and damps after the transition, and MF shear rapidly increases

at and just after the transition. (e) The evolution of the product quantity P? ¼ aIE0. The product quantity exhibits a peak just before the transition and quenches af-

ter the transition. (f) An evolution of g, showing a single burst at t ¼ 2:72� 104ða=csÞ. This single burst triggers the quench of turbulence and the product quantity

a0IE0. Thus, the L! H transition occurs. For convenience, we here draw vertical lines (A) at t ¼ 2:71� 104ða=csÞ and (B) at t ¼ 2:72� 104ða=csÞ.
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L-mode is observed. This is how the profile oscillates in

I-phase.

Fig. 10 shows the spatial evolution of turbulence inten-

sity, ZF, and MF energies. Turbulence is quenched in the

H-mode pedestal. Consequently, in Fig. 10(b), in H-mode, the

ZF is eliminated from the pedestal, except at the pedestal

shoulder. ZF is enhanced around r=a � 0:85 but decreases in

the edge region for r=a ¼ 0:9� 1:0, in correspondence to the

increase of turbulence, due to decorrelation of ZF shearing by

MF shearing. In Fig. 10(c), MF shear exhibits significant

structure in the pedestal. The MF shear in the H-mode pedes-

tal is much stronger than the ZF shear. In the I-phase, MF

shearing oscillations are seen as part of the LCO propagation.

In the L-mode, MF shearing contribution is negligible.

Fig. 11 shows profiles of diamagnetic shearing (the first

term of Eq. (13)), pressure profile curvature (the second term

of Eq. (13)), poloidal flow shearing (the forth term of Eq.

(13)), and neoclassical poloidal flow shearing (hvðneoÞ
h i0 in Eq.

(12)) for the I-phase and the H-mode. These parameters are

the ingredients of the mean flow shearing. As seen in Fig.

11(a), in I-phase, the main contributor to the mean flow shear

in the edge region is the poloidal flow, which is mostly neo-

classical poloidal flow. Poloidal flow appears to be predomi-

nantly neoclassical, except for a very thin layer within the thin

pedestal. The pressure curvature is comparable to the diamag-

netic shearing, indicating that analyses without the pressure

curvature are not valid. The radial structure of the pressure

profile curvature appears to be out of phase with the poloidal

flow. The fine structure of the MF shearing driven by the pres-

sure curvature and neoclassical poloidal flow may be related

to the nonlinear wave propagation discussed previously, since

profiles of the diamagnetic shearing without the second deriv-

ative of profile stay constant through I-phase.

In H-mode, shown in Fig. 11(b), the diamagnetic shear

dominates the mean flow shearing in the pedestal, while the

profile curvature contribution in the pedestal is not signifi-

cant. Because of the quench of the turbulence in the pedestal,

the poloidal flow is mostly governed by the neoclassical con-

tribution. At r=a ¼ 0:90, pedestal corner forms, so the curva-

ture contribution is necessarily important there. This result is

also consistent with the argument in Ref. 35. While the tur-

bulence driven poloidal flow is localized at the thin edge

layer, the poloidal flow profile is mostly neoclassical, as seen

in Fig. 11(b). This is, however, dependent on the neoclassical

poloidal viscosity, proportional to �ii. Therefore, the situa-

tion may be different for lower �ii.

(a)

(b)

(c)

edge transport barrier

FIG. 8. Profiles of (a) density nðrÞ, (b) pressure pðrÞ, and (c) temperature

TðrÞ at times of L-mode (blue dashed line) t ¼ 2:0� 105ða=csÞ, I-phase

(green chain line) t ¼ 2:8� 105ða=csÞ, and H-mode (red solid bold line)

(t ¼ 4:0� 105), respectively, as a function of radius (0:0 < r=a < 1:0). This

is for the case of a slow power ramp. At r=a ¼ 0:9, a significant edge trans-

port barrier in H-mode appears, as indicated by the vertical line.

L-mode(t=2.0 x 105 (a/cs))

I-phase(t=2.8 x 105 (a/cs))

I-phase(t=2.72 x 105 (a/cs))

H-mode(t=4.0 x 105 (a/cs))

FIG. 9. Comparison of profiles of pðrÞ at times of L-mode t ¼ 2:0� 105

ða=csÞ, H-mode t ¼ 4:0� 105ða=csÞ, and I-phase with different phase

t¼ 2.72, 2.8 (�105ða=csÞ), on 0:8 < r=a < 1:0. At t ¼ 2:8� 105ða=csÞ, tur-

bulence is peaked at the edge. Thus, the profile gradient flattens in the edge

region 0:95 < r=a < 1:0. At t ¼ 2:72� 105ða=csÞ, in turn, in the edge

region, turbulence shrinks and mean flow is most enhanced. Thus, a steeper

profile gradient is observed.

(a)

(b)

(c) EV(r)

FIG. 10. Profiles are shown for (a) turbulence intensity IðrÞ, (b) ZF energy

E0ðrÞ, and (c) MF shearing energy EV at times of L-mode t ¼ 2:0� 105,

I-phase t ¼ 2:8� 105ða=csÞ, and H-mode (t ¼ 4:0� 105), respectively, as a

function of radius (0:35 < r=a < 1:0) for the case of slow power ramp up.

At r=a ¼ 0:9, the vertical line indicates the region where the edge transport

barrier is established. H-mode is characterized by an enhanced MF shear

and quench of turbulence intensity, and ZF shearing in the edge region,

r=a > 0:9. In L-mode, the MF shearing contribution is negligible, while in

I-phase, a propagating MF structure is observed.
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IV. NEUTRAL DENSITY AND FUELING EFFECTS
ON TRANSITION AND THE PEDESTAL

In this section, we first show results of numerical studies

of tests on the L! H power threshold for various ZF damp-

ing and poloidal viscosity. These tests represent variable

neutral density effects. As is widely known, high edge neu-

tral density is unfavorable to the transition.22 While this may

be due to higher radiation reducing confinement, increased

ZF damping is also a possibility. We here re-visit the issue

of neutral related problems in relation to the ZF damping

rate. We investigate studies with a higher ZF damping rate,

corresponding to cases with higher edge neutral CX friction.

Next, we discuss fueling effects on the density profile. By

changing the fueling depth with and without the particle

pinch effect, we discuss how the pedestal width can vary.

In Fig. 12, we show cases with various ZF damping rates

cdamp;0 ¼ 1; 2; 3 and neoclassical viscosities lðneoÞ
0 ¼ 0:5; 1; 1:2.

Here, the ZF damping rates and the neoclassical viscosities are

normalized by �ii=R and �iiq
2R2, respectively. We here fix the

ramp speed slow, which is the same case as Fig. 2. As seen in

Figs. 12(a)–12(c), the transition delays as the ZF damping rate

increases, with fixed neoclassical viscosity. Thus, the power

threshold increases as the ZF damping increases. The period of

LCO decreases as the ZF damping increases. This indicates

that the period of the LCO depends on the ZF damping rate, a

tendency which is consistent with the original model of Ref.

13. A similar tendency to delay transition can be found in com-

parison with different lðneoÞ
0 and the fixed ZF damping rate, as

seen in Figs. 12(a), 12(d), and 12(e). Delays of the transition

are also observed when the neoclassical viscosity lðneoÞ
0

increases. The period of LCO decreases as the neoclassical vis-

cosity lðneoÞ
0 decreases. This is because more poloidal velocity

shear, driven by turbulence, is excited in the lower lðneoÞ
0 and

thus more MF shear, instead of the ZF shearing, affects the tur-

bulence intensity evolution. Thus increasing either the ZF

damping or the neoclassical viscosity delays transition at con-

stant heat flux power ramp, causing a power threshold upshift.

Fig. 13 shows plots of the power thresholds Qa;crit

obtained from numerical tests with various ZF damping rate

cdamp;0 and neoclassical poloidal viscosity lðneoÞ
0 , for a fast

power ramp. It is clear that the power threshold increases as

either ZF damping or neoclassical poloidal viscosity

increases. Thus, we expect higher neutral CX to increase the

power threshold. This is not surprising, since ZF shearing is

fundamental to the transition. Increasing ZF damping reduces

ZF shearing and its effect on the suppression of turbulence,

leading to an upshift in the transition threshold. We note that

recent XGC1 simulations with neutrals found results which

suggested damping of zonal flows by neutral drag.43

We examine the cases without ZF shearing, i.e.,

a0 ¼ 0, with various neoclassical viscosities. Without the ZF

shearing, the L! H transition occurs when lðneoÞ
0 � 0:5.

(a) t = 2.8 x 105 (a/cs)

(b) t = 4.0 x 105 (a/cs)

FIG. 11. Profiles of diamagnetic shearing �L�1
p L�1

n ðqicsÞ (blue chain line),

pressure profile curvature L�1
p L�1

p0 ðqicsÞ (green dash line), poloidal flow

shearinghvhi0 (red solid line), and neoclassical poloidal flow shearinghvðneoÞ
h i0

(light green solid line) for times of I-phase (t ¼ 2:4� 105ða=csÞ) and (b)

H-mode (t ¼ 2:8� 105ða=csÞ), respectively, for the case of a slow power

ramp. Here, we show all quantities used in the radial force balance equation

Eq. (14) and poloidal flow evolution equation, Eq. (12). In the case of

I-phase, neoclassical poloidal flow and pressure curvature are the dominant

players in MF shearing, while in the case of H-mode, neoclassical poloidal

flow and diamagnetic shearing are the dominant players in the pedestal

(0:90 < r=a < 1:0), but pressure curvature can be large at the pedestal

shoulder, around 0:88 < r=a < 0:92.

(a) γdamp,0=1, μ0
(neo)=1(a) γdamp,0=1, μ0
(neo)=1

(b) γdamp,0=2, μ0
(neo)=1(b) γdamp,0=2, μ0
(neo)=1

(c) γdamp,0=3, μ0
(neo)=1(c) γdamp,0=3, μ0
(neo)=1

(d) γdamp,0=1, μ0
(neo)=1.2(d) γdamp,0=1, μ0
(neo)=1.2

(e) γdamp,0=1, μ0
(neo)=0.5(e) γdamp,0=1, μ0
(neo)=0.5

t(a/cs)

r/
a

r/
a

r/
a

r/
a

r/
a

FIG. 12. Spatio-temporal evolution of ZF energy E0 in cases with a fixed

slow heat flux power ramp and various ZF dampings cdamp;0 ¼ 1; 2; 3 and neo-

classical viscosities lðneoÞ
0 ¼ 0:5; 1; 1:2. (a)-(c) show cases with fixed lðneoÞ

0 ,

but increasing cdamp;0. Increase in cdamp;0 is followed by delays of the transi-

tion. (a) and (d) and (e) show cases with fixed cdamp;0, but varying lðneoÞ
0 . As

lðneoÞ
0 increases, the transition occurs later.
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Qa;crit ¼ 0:0013 is obtained when lðneoÞ
0 ¼ 0:5 and Qa;crit

¼ 6:7 �10�3 is obtained when lðneoÞ
0 ¼ 0:1. These power

thresholds are asymptotic to those in the cases with higher ZF

damping, cdamp ¼ 10 with the same lðneoÞ
0 , plotted in Fig. 13.

Cases with higher ZF damping asymptotically approach the

case with no ZF shearing. We estimate the power threshold

without ZF shearing. In cases with lðneoÞ
0 ¼ 0:1; 0:5, the

power threshold without ZF shearing is found to approach the

cases with higher ZF damping, i.e., cdamp;0 ¼ 10. For cases

with lðneoÞ
0 > 1:0 and cdamp > 5, the transition does not occur

during the power ramp to Qa < 0:05. At least in these cases,

the power threshold without ZF shearing increases drastically.

This observation supports the hypothesis that the zonal flow is

fundamental to the L! H transition.

An important question here is whether the L! H transi-

tion can occur without ZF shearing. According to the local

predator-prey model analyses,19 without ZF shearing, the

L! H transition can still occur with a sufficiently high level

of the heat flux. The QH state exists in any power level of

the heat flux and is stabilized above a power which is suffi-

cient to excite the mean flow shear. The L state cannot exist

above a certain heat flux, due to strongly excited mean flow.

The fundamental role of ZF shearing in the L! H transition

is to reduce the power threshold by reducing the turbulence

level. However, with higher ZF damping, there is no signifi-

cant difference in the turbulence level, with or without ZFs.

Therefore, the power threshold with higher ZF damping can

be asymptotic to that without ZF shearing.

We study fueling effects on the transition and pedestal

structure, with special focus on the particle pinch. In Fig. 14,

we plot the calculated power thresholds Qa;crit with

(Vn0 ¼ 1:0) and without (Vn0 ¼ 0) particle pinch, and with

various fueling deposition widths Ldep ¼ 0:05� 0:20. The

power thresholds with particle pinch are higher, as compared

with those without particle pinch. Either with or without the

particle pinch, there is little difference in power threshold for

various fuel depositions. To discuss more about the effects of

particle pinch, we show profiles of turbulence intensity with

and without the particle pinch in Fig. 15. Comparing cases

with and without the pinch, there is no qualitative difference

in the turbulence profile. However, the turbulence intensities

are different because of different cL, as the particle pinch

effectively reduces the temperature gradient. This is because

the particle pinch tends to steepen the density gradient, and

since the pressure gradient is approximately constant,

jLT j�1 ¼ jLpj�1 � jLnj�1
, the temperature gradient necessar-

ily decreases. As turbulence is thus more weakly excited, ZF
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FIG. 14. Plots of power threshold Qa;crit for various deposition layer width

Ldep with and without particle pinch effects. The power threshold with parti-

cle pinch are higher than that without particle pinch. Either with or without

the particle pinch, little sensitivity is found in the power threshold for vari-

ous deposition layer widths.

FIG. 15. Profiles of the turbulence intensity in cases with the pinch (blue)

and without pinch (green) effects during I-phase, t ¼ 2:3� 105ða=csÞ. This

shows that more turbulence exists in the case without the pinch effects than

for the case with the pinch effects. The spatial structure of the intensity pro-

files is similar. The stronger turbulence in cases without the pinch effects

excites more ZF shearing. The ZF shearing triggers L! H transition at

lower power thresholds.
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(neo)=5.0
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FIG. 13. Investigation of power threshold Qa;crit for various ZF damping rates

cdamp as well as for neoclassical poloidal flow viscosities lðneoÞ
0 . In cases with

lðneoÞ
0 � 2:0, no transition occurs for Qa < 0:05. In case of lðneoÞ

0 ¼ 1:5 and

cdamp > 2:0, the transition does not occur for Qa < 0:05. In cases with

lðneoÞ
0 ¼ 1:0 and cdamp > 1:0, the transition does not occur for Qa < 0:05. In

case of lðneoÞ
0 ¼ 0:5, and cdamp ¼ 1, i.e., without ZF shearing (a0 ¼ 0), the

transition occurs at Qa ¼ 0:013. In case of lðneoÞ
0 ¼ 0:1, without ZF shearing,

the transition occurs at Qa ¼ 6:7� 10�3, which power threshold is equiva-

lent to the case of lðneoÞ
0 ¼ 0:1 and cdamp ¼ 1:0.
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excitation drops too, so a higher power threshold can be

expected. Note that with pinch effects, a much larger core

density is also achieved, as compared to the case without a

pinch. The higher density may induce higher radiation or ZF

damping due to the CX friction. This may further increase

the power threshold. Further studies are left to the future,

but at least we expect a significant effect of the density

pinch on the power threshold.

Here, we discuss effects related to the extent of the fuel-

ing deposition width. As is discussed above, in both cases

with and without particle pinch, the fueling depth has little

effect on the power threshold, as seen in Fig. 14. However,

pedestal formation in the early stage of H-mode exhibits dif-

ferent features. In Fig. 16, we show pedestal structure of den-

sity profiles in H-mode with and without particle pinch and

with various fueling deposition widths Ldep. With particle

pinch and increasing the fueling depth, there is little differ-

ence in pedestal width, as seen in Fig. 16(a). However, with-

out the particle pinch, an increase in the fueling depth causes

an increase of pedestal width, as seen in Fig. 16(b). It is

interesting to note that the density gradients in the pedestal

are similar to those for fixed fueling source strength, while

the core density increases as the pedestal width increases.

Inward from the pedestal, density profiles are flat without the

particle pinch. One reason why there is little dependence of

the fueling width on the particle pinch is that the peaking

effect of the particle pinch may be overestimated and thus

may overwhelm the fueling.

V. CONCLUSION

We have investigated the space-time evolution of the

L! H transition, using a time-dependent, one dimensional

mesoscale model which self-consistently describes the evo-

lution of turbulence intensity, ZF, density and pressure pro-

files, and mean poloidal mass flow. The model captures the

essential physics of ZF and MF interaction, turbulence sup-

pression by ZF and MF shearing, and poloidal flow evolu-

tion, including that driven by turbulence. We here have

elucidated how ZF shearing mediates the transition. These

findings are in good agreement with findings from several

DBS17,20,42 and probe experiments18,41 and point to the cru-

cial role of ZFs in the transition dynamics. The specific

results of this study are as follows:

I. Studies with a slow power ramp have manifested an

L! H transition via I-phase, characterized by a se-

ries of nonlinear waves, which, locally, are LCOs.

The I-phase nucleates near, but not at the LCFS. In

the model, the MF shear peak nucleates at the fixed

edge boundary. This result, a consequence of bound-

ary conditions, should be compared with results from

DIII-D, where the total E� B flow velocity negative

well nucleates in the edge region and rises to be posi-

tive outside of the LCFS.

II. The I-phase is a multi-predator-prey oscillation of tur-

bulence intensity, zonal flow, and mean flow shear.

The LCO is part of an inward propagating nonlinear

wave and appears as a slowly oscillating region of

growing width. Mean flow shear growth begins after
the onset of I-phase.

III. As is seen in DIII-D, the LCO period increases

approaching the transition. The I-phase terminates

abruptly at transition, with rapid growth of MF shear.

At the transition, pedestals in density and temperature

begin to expand inward. Local turbulence intensity

peaks just prior to transition. Mean flow shear locks

in the transition in H-mode.

IV. The phase delay between turbulence and zonal flow

increases from p=2 to p during the I-phase, consistent

with the 0D Kim-Diamond model13 and also DIII-D

results. The diamagnetic shear oscillates with growing

amplitude in I-phase, then increases abruptly at the

L! H transition, as seen in DIII-D. The growth of the

diamagnetic flow shear amplitude occurs only in

I-phase, not in L-mode. The peak of the ZF shear

increases just prior to transition. This is consistent with

the analyses of EAST experiments, suggesting that ZF

shearing is dominant just prior to the L! H transition.

V. At the L! H transition, the MF first grows and then

collapses to a small value as L�1
p drops. The ZF then

peaks and extracts the energy from the turbulence.

Then, L�1
p and L�1

n increase rapidly, as does the MF.

This is consistent with the analyses of EAST

(b)
r/a

n(r)
(a)

FIG. 16. Density profiles in H-mode with various fueling deposition layer

width Ldep and (a) with and (b) without particle pinch. In (a), little difference

results from changing the fueling deposition layer width, while in (b), the

pedestal width increases as the fueling width increases. Flat profiles and

much lower core density quantities are obtained in case without the pinch.
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experiments, suggesting that ZF shearing is dominant

just prior to the L! H transition.

VI. The actual transition event is abrupt, even if the power

ramp and LCO evolve slowly. After the transition,

edge pedestals in n, p, and also T form quickly. This

picture is consistent with the experiments, in which

the pedestal expands after the L! H transition.

VII. Numerical studies reveal that two kinds of the transi-

tion are possible. With slow power ramp, L! H tran-

sition occurs via I-phase, which clearly manifests a

quasi-periodic oscillation. On the other hand, during a

fast power ramp, the I-phase is compressed into a sin-

gle burst of ZF, leading to a transition without

I-phase. Here, how fast the ramp must be so as to pre-

vent I-phase depends on the ramp-up rate as com-

pared to the period of the limit-cycle.

Studies of power threshold with various ZF damping

and neoclassical poloidal viscosity indicate that larger neu-
tral CX increases the power threshold. More generally,

increasing ZF damping increases the power threshold, sug-

gesting that ZF is fundamental to the transition. ZF can act

as “reservoir” in which to store large fluctuation energy with-
out increasing transport, thus allowing the mean flow shear

to grow. Mean flow shear, however, ultimately is required to

“lock in” the state of quenched turbulence. Therefore, the ZF

damping must enter the power threshold condition but does

not exclusively determine it. More systematic and quantita-

tive studies of the power threshold require modification of

mean flow evolution by SOL-edge interaction incorporating

up-down asymmetry of X-point location in the single diver-

tor configuration.44 It is interesting to compare our present

results to those of another model, which incorporates SOL

and core interaction to formulate criteria that the L! H

transition occurs.45 The Fundamenski model does not

address the temporal evolution of the L! H transition and

also posits rather simplified core plasma dynamics. Never-

theless, it recovers certain experimental parameter scalings,

including a bifurcation of the power threshold in density.

Applying such SOL and core interaction conditions to the

present model, we will explore estimation of the power

threshold in a future study.

These results also suggest implications for future steady

state experiments. We find that neutral CX can damp zonal

flows in experiments,46 indicating that high edge neutral den-

sity is unfavorable to transition. This can be related to the

long established experimental lore concerning the power

threshold, “dirty machines,” re-cycling, etc. The results have

implication for the recovery of H-mode in steady state opera-

tion, if it is lost. In such the case of the recovery of H-mode,

wall saturation and consequent increased re-cycling can ulti-

mately lead to strong CX damping of ZFs, making it difficult

to recover the H-mode should a back-transition occur. This

suggest that proper wall conditioning, or reduction of wall

impurity saturation, is necessary throughout the long pulse

H-mode operation, because the ZF shearing necessary to

trigger the transition may be more difficult to excite.

The trend that higher ZF damping increases the power

threshold may explain the experimental scaling trend in the

higher density region, because cdamp / �ii / n. As well,

increasing q may make a power threshold higher, since the

neoclassical viscosity increases with q. BT may change the

power threshold through the change of qi. We also note that

according to Ref. 47, the simple model with Gyro-Bohm tur-

bulence will give the power threshold Pthresh � Ba
T ; 1 < a < 3.

Thus, the model finds that B0 scaling in the power threshold

appears from the qi dependence of the coefficients. However,

this result is mode dependent and needs further study.

Investigation of the transition and the pedestal structure,

including dependence on density pinch and fueling deposi-

tion depth, has aimed to promote the understanding of the

particle fueling dynamics. What we have found are the

following:

I. The density pinch reduces turbulence intensity and

ZF shearing excitation, because the density peaking

effect (due to the pinch) enhances reduction of the

temperature gradient by the larger density gradient.

This causes an upshift of the power threshold. With

the particle pinch effect, the density profile can be

peaked, and the total particle flux can be negative in

the presence of a sufficiently steepened temperature

gradient, assuming the ITG turbulence model.

II. The fueling deposition depth has virtually no impact

on the L! H transition, with or without particle

pinch. Without particle pinch, deeper deposition makes

a deeper density pedestal, while with particle pinch, lit-

tle effects on the pedestal width are observed. This

may be because here the peaking effects overwhelm

the fueling effects.

For further parameter surveys to such cases where the

external particle flux source and the pinch-induced peaking

coexist, we need to expand the turbulence model to elec-

tron turbulence, such as CTEM. These will give more

detailed physical insights for the fueling study and address

such phenomena as gas-puffing, pellet injection, and also

supersonic molecular beam injection (SMBI).

We remark on the relation of this study to high b plasma

physics. We here do not consider electromagnetic physics

such as kinetic ballooning mode (KBM) or peeling balloon-

ing mode possibly excited in high b plasmas. Therefore, in

the present model, we do not see any traditional ELM oscil-

lations. Though KBM could play a role in determining the

pedestal structure, KBM should not directly impact the L! H

transition itself, since KBM is excited in higher b plasmas

close to the ideal limit. For actual L! H transition physics—

as opposed to pedestal physics—lower b plasmas are more

relevant. Furthermore, we have already reproduced most of

the detailed transition dynamics without considering high b
physics.

In future work, we will study back transitions, i.e., H! L

events. We note here some results, in relation to the ramp

speed issue. Model studies of slow power ramp downs indi-

cate that the H! L transition occurs via an I-phase. Instead,

fast ramp downs exhibit a rapid burst of ZF activity, but no

clear LCO. These features are similar as the phenomena, seen

in the L! H forward transition. Furthermore, we will discuss

effects of noise on the L! H transition in another work.
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L! H transition is fundamentally non-deterministic, as the

edge layer bombarded by ensemble of core avalanches, pro-

ducing large variability in the local heat flux. As edge heat

flux variability is induced by core avalanches, the edge heat

flux frequency spectrum is better taken to be 1=f , i.e., pink

noise, than white. 1=f noise is more effective for producing

transitions than white noise, because 1=f noise tends to be

more coherent. We will discuss these issues in future papers.
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APPENDIX A: THE DERIVATION OF THE FEEDBACK
LOOP OF TURBULENCE, ZONAL FLOW, AND MEAN
FLOW SHEARING

The derivation of the model to describe feedback loop

between turbulence and ZF is shown here, taking into account

multiple shearings such as MF. We start from the well-known

wavekinetic equation48 for drift wave action Nk 	 �k=x� /
ð1þ k2

?q
2
s Þj~/

2

k j and the zonal flow time evolution, where x�
is drift wave frequency, and Doppler-shifted drift wave fre-

quency xk ¼ x� þ qrVZF, with respect to small-scale wave

number
�
k and the radial wave number of mesoscale shear

flows qr and the zonal flow velocity VZF,

@Nk

@t
þ @xk

@k
� @Nk

@x
� @xk

@x
� @Nk

@k
¼ C Nf g; (A1)

@V0ZF

@t
¼ c2

B2

ð
d2

�
k

khkr

ð1þ k2
hq

2
s Þ

N
�
k � cdampV0ZF; (A2)

where cdamp is ZF damping rate related to the collisionality

and CfNg accounts for local-in-scale interactions of

turbulence.

Applying scale separation of wave action into mean

value hNki and perturbation ~Nk, as Nk ¼ hNki þ ~Nk, the drift

wave group velocity vgr ¼ @xk=@kr, the shearing relation

@xk=@x ¼ khV0ZF, and a quasilinear approximation, we

obtain an evolution of the mean population hNki,

@hNki
@t
¼ @

@kr
Dk
@hNki
@kr

; (A3)

whereas

Dk ¼
X

qr

q2
r k2

hjVZF;qr ;Xj
2sqr ;X: (A4)

Here, sqr ;X is the autocorrelation time between drift wave

group velocity and the ZF group wave packet, obtained from

Doppler-shifted frequency dispersion Dðkv� xkÞ, which is

1=sqr ;X ¼ jDðkv� xkÞj ¼ jðv� vgrÞDkj: (A5)

Thus, for quasi-particles with drift wave phase velocity

v ¼ xk=k ¼ vph resonating with group propagation of the ZF

shearing vgr ¼ @X=@qr ¼ vph, we obtain

sqr ;X ¼
				 @X
@qr
� vgrðkÞ

� �
Dqr

				
�1

; (A6)

where Dqr is the typical width of the envelope of the ZF and

MF wave packet. Rewriting the mean turbulence energy as I,
i.e., I 	 h�i ¼

Ð
dkxkhNki, we find a temporal evolution

equation for turbulence intensity with linear growth and non-

linear damping as well as shearing effects as

@I

@t
¼ cLI � DxI2 �

X
qr ;X

aqr ;XIV02ZF;qr ;X; (A7)

where aqr ;X � sqr ;X is the coupling parameter between turbu-

lence and ZFs related to the correlation time of the shears.

Here, we retain two different modes of flows, i.e., meso-

scale ZF and large scale mean flow. ZF has a shearing scale

qr � 1=
ffiffiffiffiffiffiffi
aqi
p

, while MF has qr � 1=Ln, since MF shear is

determined by the profile gradients. We finally obtain

@I

@t
¼ cLI � DxI2 � a0IE0 � aVIEV : (A8)

This comes to Eq. (1), including the additional nonlocal dif-

fusion term.

Note that we neglect the geodesic curvature �ð2cs=RÞ
hðpi þ peÞsin hi in the zonal flow evolution Eq. (A2). If the

geodesic curvature includes, we may expect the higher fre-

quency eigenmode of ZF, i.e., the geodesic acoustic mode

(GAM). A model incorporating the geodesic curvature and

also the sound wave propagation is discussed in Ref. 49. As

most experimental results show, however, GAM is not rele-

vant in I-phase and H-mode. Therefore, it is sufficient to

neglect the geodesic curvature in the model incorporating the

mean flow shearing. A screening factor of the zero-frequency

ZF, A0 ¼ ð1þ 2q2Þ�1
, in the fluid closure may be included in

the evolution of ZF, originating from the parallel nonlinearity.

However, the screening factor does not qualitatively change

the stability of the model. Thus, here we do not consider this

additional effect, since we consider a minimal model of the

feedback loop.

As the GAM in the I-phase is observed in ASDEX

Upgrade,16 it is interesting to consider a turbulent state regu-

lated by the GAM there. In the possible GAM and ZF coex-

isting state discussed in Ref. 49, we expect that no GAM will

survive for lower q value. The GAM always suffers from

higher damping than ZF. Thus, the GAM growth is weaker

and drops with milder mean flow shearing interaction. Above

a certain critical q, the GAM-only state can still be possible.

In this self-regulation process, the energy input from turbu-

lence to ZF drops considerably, while that from turbulence

to the GAM persists. In such cases that the GAM is relevant,

the turbulence spreading induced by the GAM may modulate

the propagation speed of the LCO.23 Furthermore, GAM and
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ZF are more similar than different. Both are n¼ 0 (no trans-

port) secondary modes excited by three wave interactions via

modulational instability. Both shear the turbulence, and so

extract energy from it. The major difference is that GAMs

have x � cs=R, while ZFs have x � 0. Also, GAM propa-

gates radially. We rather consider the similar basic structure

of two predator (GAM and MF or ZF and MF)-one prey (tur-

bulence) systems. Very similar results can be expected, but

we expect additional sensitivity of the collisionless damping

to the power threshold.

APPENDIX B: THE DERIVATION OF THE INHIBITION
OF ZONAL FLOW SHEARING BY MEAN FLOW
SHEARING

We discuss how ZF shear shrinks in the presence of the

MF shear, based on the wavekinetic treatment.13,48 Here, we

define hVEi as the mean E� B shear flow and VZF as zonal

flows with the form of expðiqrxÞ. In the presence of the mean

flow shear, the linearized wave kinetic equation for the per-

turbation ~Nk and mean hNki are written as

@ ~Nk

@t
þ iqrvgr

~Nk � khhV0Ei
@ ~Nk

@kr
þ c ~Nk ¼ khV0ZF

@hNki
@kr

: (B1)

Here, the effect of a mean shear flow hVEi on ~Nk is explicitly

shown in the third term on the l.h.s. of Eq. (B1). We solve

Eq. (B1) along a non perturbed orbit by introducing a total

time derivative Dt as

Dt ¼
@

@t
� khhV0Ei

@

@kr
: (B2)

In this coordinate, the shearing effect by hV0Ei is explicitly

reflected in the linear increase of kr in time as

Dtkr ¼ �khhV0Ei: (B3)

Equation (B1) can be integrated along this nonperturbed

orbit as

~Nkðqr; tÞ ¼
ðt

�1
dt0exp



�cðt� t0Þ � iqr

ðt

t0
dt00vgrðt00Þ

�

� khV0ZFðp; t0Þ
@hNkðt0Þi
@krðt0Þ

; (B4)

where a term depending on the initial condition is dropped.

The shearing effect by a mean flow is embedded in the time

dependent group velocity vgr and equilibrium wave quanta

density spectrum @hNkðkrðt0ÞÞi=@krðt0Þ. In the limit where

the mean shearing occurs on a time scale larger than

other dynamical time scales (i.e., 1=c, 1=vgrqr, and 1=X), we

can approximate @hNkðkrðt0ÞÞi=@krðt0Þ � @hNkðkrðtÞÞi=@krðtÞ.
Note that if we take vgrðt00Þ and krðt0Þ to be constant, the

result is the usual modulational instability without the mean

flow shear. However, by taking into account the dependence

of vgr on hV0Ei through kr, we expect the slowdown of the

propagation of drift waves due to enhanced inertia via mean

shearing. Then, the substitution of the time dependence of

expf�iXtg for ~Nk and VZF simplifies Eq. (B4) to

~Nkðqr;XÞ � khV0ZFR
@hNki
@kr

: (B5)

Here, the real part of R becomes

ReðRÞ � 1

c
1� 12q2

r hV0Ei
2x2
�k

2
h

c4

" #
(B6)

for k?qs < 1 and c > qvgr > X, where x� ¼ khv� ¼ khcTe

=eB0Ln is the electron diamagnetic drift frequency, originat-

ing from the group velocity. The sign of ReðRÞ is always posi-

tive since R was obtained by treating the effect of hV0Ei as a

small perturbation. From Eqs. (A2) and (B6), ZF growth is

also obtained as

X � iq2
r

ð
d2k

k2
hkr

ð1þ k2Þ2
R � @hNki

@kr

� �
: (B7)

From Eq. (B7), it is clearly shown that a mean flow shear

suppresses the growth rate of zonal flows. The reduction

arises due to the time variation of vgr, related to the decorre-

lation of drift wave propagation by a shear flow, weakening

the coherent modulation response of the drift wave spectrum.

Thus, this effect is put as f0 in Eq. (2).
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