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We calculate the correction, due to nonlinear wave-wave interactions, to the Zel’dovich estimate for the
turbulent diffusivity of magnetic fields in a model of two-dimensional magnetohydrodynamic turbulence
in the presence of stable stratification. Such a model has some relevance to hydromagnetic turbulence in
stellar interiors. The significance of this correction is that, unlike the lowest-order Zel’dovich balance, it is
independent of the molecular resistivity � and so will not vanish in the limit of a large magnetic Reynolds
number, although the correction is O��4�, where � is the wave slope, which necessarily is small. Thus, we
are led to the counterintuitive result that the presence of stable stratification can actually increase the
vertical flux of magnetic fields relative to that in 2D MHD turbulence without stratification.
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Turbulence in a magnetized fluid presents a theoretical
and conceptual challenge quite distinct from that of neutral
fluids. This is because magnetohydrodynamic (MHD) tur-
bulence is a complex dynamical system in which two fluid
fields, the velocity v�x; t� and the magnetic field b�x; t�,
evolve nonlinearly and simultaneously. Additionally, in
cases where the magnetic Reynolds number Rm �U‘=�
is very large (where U and ‘ are typical fluctuation veloc-
ities and length scales, respectively, and � is the collisional
resistivity), Alfvén’s theorem dictates that the magnetic
field will be frozen into the flow, except on small scales,
where collisional resistivity allows some slippage of b
relative to v. The constraint imposed by this ‘‘freezing-
in’’ law is especially severe in the high Rm case—the
purview of many astrophysical and geophysical hydro-
magnetic flows, where length scales can be very large
and collisional resistivities very small—as the resistive
diffusion rates from collisions alone are far too slow to
be of any practical interest [1,2].

The freezing-in law, which is akin to, but distinct from,
Kelvin’s circulation theorem in neutral fluids, has some
interesting implications for magnetohydrodynamic flows
in two dimensions. In this case, the magnetic field may be
represented by a vector potential A � Aŷ (such that B �
r�A), which will be advected by the flow:

 @tA� v � rA � �r2A� f̂A: (1)

Zel’dovich [3] made the observation that, in the absence of
a magnetic stirring f̂A, this has the form of a heat equation,
so that the magnetic energy must ultimately decay to zero,
although it may temporarily grow as a result of stretching
of the field lines by the turbulent flow. Dynamo action is
thus prohibited in two dimensions.

In the presence of a mean field B0 � �@zhAi, we expect
a down-gradient diffusive flux of magnetic potential of the
form �A � �@zhAi�T � B0�T , where �T is the turbulent

diffusivity of the magnetic potential. Multiplying (1) by A
and averaging over small scales then yields, for stationary
turbulence, the well-known Zel’dovich theorem [4]

 �
hb2i

B2
0

�
hAf̂Ai

B2
0

� �T: (2)

Equation (2), which is a direct consequence of Alfvén’s
freezing-in law, has important consequences for the turbu-
lent diffusion of magnetic fields in two dimensions, as was
strikingly illustrated by Cattaneo and Vainshtein [6]. By
employing a combination of physical argument and nu-
merical calculation, they demonstrated that the turbulent
resistivity �T (i.e., the turbulent diffusivity of magnetic
flux) is suppressed below the kinematic value �kin �
hv2i�c by an Rm-dependent factor: �T � �kin�1�
RmhBi

2=hv2i��1, where the mean field hBi is measured in
units of the Alfvén velocity and �c is a correlation time.
This expression was later derived using a quasilinear clo-
sure by Gruzinov and Diamond [7]. For high Rm flows, this
suppression, or ‘‘quenching,’’ can be significant indeed,
even for weakly magnetized fluids satisfying hBi2 >
R�1
m hv

2i. The result of Cattaneo and Vainshtein engendered
considerable debate, particularly when the result was ex-
tended to the � effect in three dimensions so a similar
suppression was found to act on dynamo action [8,9]. In
view of the enormous values of Rm found in astrophysical
flows (107 in stellar convection zones, for example), this
suppression is sometimes termed ‘‘catastrophic quench-
ing’’ and places a serious limit on the observable flux
production in cosmical dynamos.

In this Letter, we consider an extension to the theory of
turbulent diffusion of magnetic fields in two-dimensional
MHD turbulence to include the effect of an imposed stable
stratification [10]. This system constitutes a simple model
relevant to the theory of MHD turbulence in a convectively
stable stellar interior. The radiation zone of the Sun is
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strongly stably stratified with a Brunt-Väisälä frequency of
about 2:5� 10�3 s�1. At the interface between the con-
vection zone and the radiation zone, in a thin layer known
as the tachocline, solar dynamo activity is thought to give
rise to a strong toroidal field of about 104–105 gauss [11–
13], so that plasma motions here are likely to be severely
constrained by radial stratification. Turbulent coefficients,
such as turbulent resistivity and viscosity, are of interest in
considerations of tachocline structure [14,15].

Let the motion be confined to the xz plane, so that the
velocity and total magnetic field are described by a stream
function ��x; t� and magnetic potential A�x; t� such that
v � r�� ŷ and B � rA� ŷ. The usual governing equa-
tions for incompressible two-dimensional MHD are modi-
fied by the appearance of a buoyancy term in the Navier-
Stokes equation and an additional equation governing the
density ��x; t�:

 �
Dv
Dt
� �rPeff �

1

4�
B � rB� �gẑ� ��r2v� f̂; (3)

 

DA
Dt
� �r2A� f̂A;

D�
Dt
�Dr2�� f̂�; (4)

where D=Dt � @t � v � r is the usual advective deriva-
tive, �, �, and D are the molecular viscosity, resistivity,
and mass diffusivity, respectively, and f̂, f̂A, and f̂� are
stochastic stirring fields. Both thermal and magnetic pres-
sure are contained in Peff . Gravity g � �gẑ is pointed in
the negative z direction.

Separating the magnetic potential into mean and fluctu-
ating components A � hAi�z� � ~A�x; t� implies that the
mean and fluctuating components of the magnetic field
are hBi � B0x̂ � �@zhAix̂ and b � r ~A� ŷ and will
again be measured in units of the Alfvén velocity. In
addition, vertically stable stratification is assumed, so
that the density field can also be separated into a mean
and fluctuating component � � h�i�z� � ~��x; t�, where
h�i has a negative gradient in the z direction, and we
may define the usual Brunt-Väisälä frequency N associated
with stable stratification as N2 � �g@z lnh�i � 0.

Consistent with a Boussinesq approximation, it is as-
sumed that the fluctuation in density ~� appears only in the
buoyancy term. Therefore, taking the curl of (3) yields the
following equations for the fluctuating fields (dropping
tildes where there is no ambiguity):

 @t!�
dhAi
dz

@xr2A�
g
h�i

@x�

� v � r!� b � rj� �r2!� f̂!; (5)

 @tA�
dhAi
dz

vz � �v � rA� �r2A� f̂A; (6)

 @t��
dh�i
dz

vz � �v � r��Dr2�� f̂�; (7)

where ! � �r2� and j � �r2A are the vorticity and
current density, respectively, in the y direction and f̂! is a
random torque.

The addition of buoyancy forces to the equations of
motion has the effect of converting large-scale eddies
into dispersive magnetointernal waves, as can be seen
from the dispersion relation obtained from the linearized
dissipationless equations of motion �2

k � �AW2
k ��IW2

k ,
where �AW

k � B0kx is the Alfvén wave frequency and
�IW

k � Nkx=jkj is the frequency of an internal gravity
wave. The linear modes are, therefore, hybrid ‘‘magneto-
internal’’ waves. For our purposes, the most pertinent
property of these waves is that, on small scales, they
behave like Alfvén waves and are nondispersive, whereas
on large scales they are more like pure internal gravity
waves, which are dispersive. In addition, those waves with
a wavelength above a threshold length scale (specifically,
those scales for which the wave slope k	 is less than unity,
where 	 is a fluctuation displacement element) will interact
weakly, transferring energy among resonant modes. By
contrast, wave interactions on small scales are washed
out by turbulent decorrelation before they can interact
resonantly. With some additional well-known assump-
tions—briefly, the existence of a broad spectrum of weakly
interacting dispersive waves—the turbulence on large
scales can therefore be described by wave turbulence
theory [10,16–20].

Wave turbulence theory has the advantage of possessing
a source of small-scale irreversibility which is present even
in the case of �! 0, that is, Rm !1: three-wave reso-
nances, which are present even in the dissipationless limit,
via the Landau pole prescription, and appear in the theory
as 
�!k �!k0 �!k�k0 �. The wave triads identified by
this resonance condition are those which make a secular
contribution to irreversible energy transfer among interact-
ing modes [21]. As we shall demonstrate, the spectral
transfer of energy among resonant modes also gives rise
to the spatial transport of magnetic potential. The ap-
proach advocated here may therefore be viewed as an
extension of the Prandtl mixing model to weak or wave
turbulence.

In addition to the turbulent flux �A, the resonant inter-
action of magnetointernal waves will drive a flux of mag-
netic potential A given by 
�A � hvz
Ai � hA
vzi, where
angle brackets denote a spatial average and 
vz and 
A
represent the response of the fluid and the field, respec-
tively, to wave interactions. Within the region of wave-
number space in which wave turbulence theory is valid, the
linear fields vz, A, and � are simply due to wave oscilla-
tions and can be expressed in terms of the vertical wave
displacement 	, defined by vz � @t	. Likewise, neglecting
nonlinear and dissipative terms from (6) and (7) gives, for
the linear fields, A � �@zhAi	 and � � �@zh�i	.
Substituting for these linear fields in 
�A gives

 
�A � h@t	
Ai � h	@zhAi
vzi: (8)
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For stationary turbulence, the time derivative of averaged
quantities will vanish, so that (8) can be written as

 
�A � �h	�@t
A� @zhAi
vz�i: (9)

The expression in round brackets in (9) is, from Eq. (6),
simply �
�v � rA� � �r2
A, so that

 
�A � h	
v � rAi � h	v � r
Ai � �h	r2
Ai: (10)

The first expression on the right-hand side of (10) is, by
virtue of the expression for the linear field A, proportional
to 2h	
v � r	i � hr � �
v	2�i � h	2r � 
vi and will van-
ish for periodic boundary conditions and incompressibility
of 
v. (Again, 	 is the vertical wave displacement.) The
wave-interaction-driven vertical flux of magnetic potential
is then

 
�A � �coll � �ww; (11)

where �coll � ��h	r
2
Ai is the flux driven by molecular

collisions and �ww � h	v � r
Ai is the flux driven by
nonlinear wave-wave interactions.

As required for the validity of wave turbulence theory,
the wave slope k	 must be strictly less than unity, so that
the response 
A can be expanded in powers of k	, 
A �

A�1� � 
A�2� � 
A�3� � � � � , where 
A�1� � A is due to
wave oscillations and the higher-order terms are due to
wave interactions. Therefore, the lowest-order contribution
to 
�A comes from the collisional flux 
��2�A � �hb2i=B0.
Expressing this in terms of the wave displacement 	, this
becomes 
��2�A � B0�hr	 � r	i � B0��

2, where � is the
wave slope.

To calculate the correction to the Zel’dovich theorem
arising from wave-wave interactions, we express �ww in
terms of Fourier components:

 �ww � Re
X
�

�k0 � k00 � ŷ�	k0!0�k00!00
Ak!; (12)

where the summation is over �, the set of all wave triads
�k; !�; �k0; !0�; �k00; !00� satisfying the resonance condi-
tions k� k0 � k00 � 0, !�!0 �!00 � 0.

We shall assume that each field has associated with it a
random phase [the random phase approximation (RPA)
[22]]: This, and the fact that the nonlinearities are qua-
dratic, has the consequence that the lowest-order contribu-
tion to �ww is

 ��4�ww � Re
X
�

�k0 � k00 � ŷ�	k0!0�k00!00
A
�2�
k!: (13)

It is worth noting that (13) is independent of 
��2� or 
��2�,
so we need calculate only 
A�2�.

In Fourier space, the equations of motion (3) and (4) can
be written in the form @tuk � iLkuk �Nk�u;u�, where
uk is the vector of dynamical fields, Lk is the linear
operator (a matrix), and Nk are the quadratic nonlineari-
ties. The second-order responses 
u�2� then satisfy

@t
u�2�k � iLk
u�2�k �Nk�u;u�, with the formal solution

 
u�2�k! �
i

!�Lk � i0
�

Nk!�u;u�; (14)

where the presence of 0� ensures causality. The RPA then
implies that the �k; !� mode is driven by the beating of the
�k0; !0� and �k00; !00� modes:

 N k! � u	k0!0N k;k0;k00u	k00!00 ; (15)

where N is the interaction tensor. Finally, expressing the
linear fields u in terms of the displacement 	 yields

 N k! � nk0 ;k00

!0 ;!00
	k0!0	k00!00 : (16)

Substituting (14) into the expression for ��4�ww then gives
the lowest-order contribution to the wave-interaction-
driven flux. The exact form of ��4�ww depends upon the linear
operator L and the interaction tensor N ; for stratified
MHD, it is ��4�ww � �@zhAi�

�4�
ww, with

 ��4�ww �
�
8

X
�

gk0;k00 �C
��� � C����j�k0!0 j

2j�k00!00 j
2;

(17)

where�k! � jkj	k! is the wave slope of the �k; !�mode,
gk0;k00 � �êk0 � êk00 � ŷ�2 is a geometrical factor, and the
coupling coefficients C
 are
 

C
�
kx
�k

k02�k002

k2

�
!0

k0x
�
!00

k00x

��
!0

k0x

!00

k00x
�B2

0

�



�
!0

k0x
�
!00

k00x

�
2
:

(18)

The response times �
 � 
�!
�k� come from taking
the real part of i�!
�k � i0���1.

The Zel’dovich theorem then becomes

 �
hb2i

B2
0

�
hAf̂Ai

B2
0

� �T�R
�1
m � � �

�4�
ww � � � � ; (19)

where the ellipsis denotes terms of order �6 and higher.
Here �T�R�1

m � denotes the contributions to the flux which
are ultimately tied to molecular diffusion. The asymptotic
behavior of the two terms on the right of (19) is set by two
dimensionless parameters: Rm and k~". For sufficiently high
Rm, the term proportional to R�1

m will be dominated by the
fourth-order term, which has no dependence on Rm.

Crucially, Rm and k	 are independent asymptotic pa-
rameters, measuring, as they do, the ratio of different
dimensional quantities. This is most clearly demonstrated
in terms of time scales: Rm is the ratio of the diffusive time
scale �D to the advective time scale �NL, which is set by the
nonlinearity. The time scale �NL also describes the rate of
nonlinear steepening of waves, and the ratio of the period
1=!k of a wave with wavelength k to �NL is simply the
wave slope k	. Unlike Rm, which is defined relative to
some reference scale, k	 must be determined scale by

PRL 99, 224502 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
30 NOVEMBER 2007

224502-3



scale. Therefore, �T is dominated by wave-wave inter-
actions in the dual asymptotic limit k	� 1� Rm, or
!�1
k � �NL � �D.
Conclusion.—In the presence of stable stratification, the

Zel’dovich theorem is modified by interacting magneto-
internal waves, which introduce a new time scale associ-
ated with the slow transfer of energy among resonant wave
triads. We have calculated the lowest-order contribution to
the flux arising from such wave-wave interactions and have
shown that, unlike the flux driven by molecular collisions,
it is independent of the molecular resistivity � and hence
the magnetic Reynolds number Rm, although it is still
limited by the conditions of wave turbulence theory. In
the limit �! 0 (Rm ! 1), the flux driven by wave inter-
actions will remain finite (but small in k	 < 1), while the
collisional flux will be strongly quenched. Thus we are led
to the surprising and counterintuitive conclusion that, all
other factors (such as forcing and dissipation) being equal,
the addition of buoyancy to the already tightly constrained
system of homogeneous high Rm two-dimensional MHD
can actually increase the transport of mean magnetic po-
tential. Wave-wave interactions, therefore, place a signifi-
cant limit on the theory of ‘‘catastrophic’’ resistivity
quenching in astrophysical magnetofluids.
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