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In this work, we study the effects of resonant magnetic perturbations (RMPs) on turbulence, flows,

and confinement in the framework of resistive drift wave turbulence. We extend the

Hasegawa-Wakatani model to include RMP fields. The effect of the RMPs is to induce a linear

coupling between the zonal electric field and the zonal density gradient, which drives the system to

a state of electron radial force balance for large dBr

B0
. Both the vorticity flux (Reynolds stress) and

particle flux are modulated. We derive an extended predator prey model which couples zonal

potential and density dynamics to the evolution of turbulence intensity. This model has both

turbulence drive and RMP amplitude as control parameters and predicts a novel type of transport

bifurcation in the presence of RMPs. We find states that are similar to the ZF-dominated state of

the standard predator-prey model, but for which the power threshold is now a function of the RMP

strength. For small RMP amplitude, the energy of zonal flows decreases and the turbulence energy

increases with dBr

B0
, corresponding to a damping of zonal flows. VC 2012 American Institute of

Physics. [http://dx.doi.org/10.1063/1.3694675]

I. INTRODUCTION

The target regime for next step fusion devices such as

ITER is the H-mode regime (see e.g., Ref. 1 and references

herein). However, an intermittent MHD global instability

known as edge localized mode (ELM), characteristic of the

Hmode regime, threatens the plasma facing components due

to strong heat load on the materials. It is, therefore, crucial to

control ELMs in future devices and particularly ITER. One

possible way of achieving this goal is by applying resonant

magnetic perturbations (RMPs), induced by a set of external

coils. Experiments on several fusion devices showed a stabi-

lization—i.e., mitigation in some devices and complete sup-

pression in others—of ELMs.2–8 The precise mechanism

responsible for this stabilization is yet not totally understood.

As most theories of RMP effects are based on neoclassical

physics, see e.g., Ref. 9 and reference herein, the RMP effect

on turbulence is, to our knowledge, not broadly considered.

There are some turbulence simulations showing a modifica-

tion of drift-Alfven turbulence by RMPs in the scrape-off

layer10 and the study of effects on relaxation oscillations of

transport barriers.11,12 We emphasize, though, that the

experiments of Ref. 13 clearly show that RMPs have a strong

effect on turbulence. We showed, in previous work, that

drift-wave turbulence level and associated zonal flows are

strongly modified by RMPs, by exploiting a minimal model,

namely a generalization of the Hasegawa-Wakatani model.14

In the present work, we clarify the derivation of the model,

and we give more discussion of the basic physics mecha-

nisms of the RMP-drift wave interaction. This article is

organized as follows: In Sec. II, we derive the extended

Hasegawa-Wakatani model. In Sec. III, we apply a modula-

tional stability analysis using the wave kinetic formalism, to

obtain a set of linearly coupled equations for the evolution of

a secondary instability, i.e., a zonal mode. We subsequently

use the wave kinetic formalism to derive an evolution equa-

tion for the turbulence energy, which nonlinearly couples to

the zonal mode equations. In Sec. IV, we discuss the differ-

ent states of the coupled drift waves—zonal mode model and

then present some conclusions in Sec. V. The concept of

zonal modes is ubiquitous in plasma turbulence, although the

term “modes” is seldom used to refer to this concept. For the

purpose of illustration, a schematic representation of zonal

modes is given [Fig. 1].

II. EXTENDED HASEGAWA-WAKATANI MODEL

In this section, we will derive an extended Hasegawa-

Wakatani model, describing drift-wave turbulence in pres-

ence of RMPs. We start by considering the continuity and

vorticity equations for density n and electric potential /

@

@t
nþ f/; ng ¼ rkjk; (1)

q2
s

@

@t
r2
?/þ q2

sf/;r
2
?/g ¼ rkjk; (2)

where the parallel current is

jk ¼ jk0 þ djk: (3)

Here, jk0 denotes the unperturbed parallel current, given by

jk0 ¼ �Dkrk0ð/� nÞ (4)

with rk0 ¼
B
B
� r the unperturbed parallel gradient and

Dk ¼ v
2
th;e=�ei the parallel diffusivity, vth;e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=me
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being the electron thermal velocity, and �ei the elecron-ion

collisional frequency, which generates a parallel (Spitzer-

Harm) resistivity. Here, both the parallel gradient operator

rk and the parallel current perturbation djk depend on the

non-linear parallel gradient perturbation

rk ¼ rk0 þ fdwFg; (5)

djk ¼ �Dkfdw
F;/� ng; (6)

where dwF ¼ dwFðx; y; zÞ denotes the magnetic flux pertur-

bation associated to forced-reconnection by RMPs. In the

following, we neglect the plasma response and approximate

the magnetic flux by its forced value, i.e., we use the approx-

imation: dw � dwF. Thus, we do not directly address the

issue of screening of the external RMP field.

Applying a flux-surface average (the average is per-

formed over unperturbed flux-surfaces, since RMPs only per-

turb them weakly) to the divergence of the parallel current,

yields

hrkjki ¼ hrk0jk0i þ hfdw; jk0gi þ hrk0djki þ hfdw; djkgi:

(7)

The first and third terms on the rhs of Eq. (7) vanish

when performing the average, and only two terms remain

hrkjki ¼ �Dkhfdw;rk0ð/� nÞgi

� Dkhfdw; fdw;/� nggi; (8)

where we replaced jk0 and djk by their expression in terms of

/; n.
Equation (8) is more clearly written in terms of the ra-

dial magnetic field

hrkjki ¼ �Dk

*
dBx

B

@

@x
rk0ð/� nÞ

+

� Dk

*
dBx

B

@

@x

dBx

B

@

@x
ð/� nÞ

� �+

: (9)

Considering disparate-scale interactions, we assume that

the scale of the magnetic perturbation, determined by the

RMP wavenumber spectrum, is large compared to the meso-

scale, i.e., the zonal scale

1

dB

@dB

@x
�

1

/ZM

@/ZM

@x
: (10)

Hence, the magnetic perturbation is treated as uniform

under a zonal average. Using this approximation, the first

term on the rhs of expression (9) vanishes upon average and

reduces to a single term

hrkjki ¼ �Dk
dBx

B

� �2 @2

@x2
ðh/i � hniÞ: (11)

We are aware that, by using the disparate-scale approxi-

mation, the “resonant” character of the RMP effect is lost,

since the resonance with the axisymmetric magnetic field can

only occur via the first term on the rhs of Eq. (9), i.e., through

the unperturbed parallel gradient rk0. However, we focus in

this work on the RMP effect on zonal flow, and this effect is

also observed experimentally for non-resonant magnetic field

perturbations. We do note though that linear RMP effects on

drift-waves or other underlying instabilities depend on reso-

nance, and we will investigate them in a future work.

It is now straightforward to write the flux-surface aver-

aged generalized Hasegawa-Wakatani model

@

@t
hni þ

@

@x
h~vx~ni ¼ �Dk

dBx

B

� �2 @2

@x2
ðh/i � hniÞ (12)

q2
s

@

@t
hr2

?/i þ lhr2
?/i

� �

þ q2
s

@

@x
h~vxr

2
?
~/i

¼ �Dk
dBx

B

� �2 @2

@x2
ðh/i � hniÞ; (13)

where we include a flow damping term l due to neoclassical

ion-ion friction.16

Here, h~vx~ni; h~vxr
2
?
~/i are, respectively, the (convective)

particle flux and the vorticity flux, the latter being linked to

the Reynolds stress via the Taylor identity

h~vxr
2
?
~/i ¼

@

@x
h~vx~vyi: (14)

The physics content of Eqs. (12) and (13) can be under-

stood more easily from the point of view of ambipolarity-

breaking responsible for the nonlinear drive of zonal flows. A

physical picture of the basic effect of RMPs on zonal modes

can be gleaned by considering local ambipolarity-breaking or

equivalently, the dynamics of total (normalized) polarization

charge Q and total particle number N, in a zonal annulus. The

volume-integrated (normalized) vorticity Q ¼ �q2
s

Ð Ð Ð
r2
?

/ dV and volume-integrated density N ¼
Ð Ð Ð

n dV in a zonal

annulus of surface area S0 and radial width dx evolve accord-

ing to

FIG. 1. Illustration of the concept of zonal modes.
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dN

dt
¼ �S0 h~vx~ni �

dBx

B
hdjxi

� �xþdx

x�dx

; (15)

dQ

dt
¼ S0 h~vx~qpoli �

dBx

B
hdjxi

� �xþdx

x�dx

�lQ: (16)

Here, the second term on the rhs of both Eqs. (15) and

(16) is a radial electron current hjxi ¼ � dBx

B
@
@x ðh/i � hniÞ

that is “weighted” by the RMP amplitude dBx

B
. Equation (16)

shows that the RMP-induced weighted electron current
dBx

B
hdjxi can compete against the (normalized) flux of polar-

ization charge (i.e., normalized vorticity flux) �h~vx~qpoli

¼ �q2
s h~vxr

2
?
~/i. The last term on the rhs of Eq. (16) repre-

sents collisional friction, which damps polarization charge. It

is well known that the flux of polarization charge (linked to

Reynolds stress) is responsible for the nonlinear generation

of zonal flows. In a simple picture, this competition can thus

result in a damping of zonal flows. An illustration of this

competition between flux of polarization charge and RMP-

induced weighted electron current is given [Fig. 2]. How-

ever, the actual picture is more complicated, because the

RMP-induced weighted electron current also affects the

zonal particle balance, via Eq. (15), thus it directly couples

the zonal flow dynamics to the turbulent particle flux h~vx~ni.
This can be seen by considering an average radial scale D

for zonal modes, noting that Q ¼ �
q2
s

D
2

Ð Ð Ð
/ dV, and com-

bining Eqs. (15) and (16). We then identify a two-fluid polar-

ization charge, i.e., volume-integrated potential vorticity U

¼ QþN and another quantity that we call (volume-inte-

grated) nonadiabaticity H ¼
Ð Ð Ð

ð/� nÞdV ¼ �
D

2

q2
s

Q� N:

dU

dt
þ lQ� S0½h~vx~qpoli � h~vx~ni� ¼ 0; (17)

dH

dt
þ S0 h~vx~qpoli �

q2
s

D
2
h~vx~ni

� �

¼
1�

q2
s

D
2

q2
s

D
2

S0

dBx

B
hdjxi: (18)

Equations (17) and (18) clearly show a complicated coupling

between the flux of polarization charge and the particle flux.

At marginality, i.e., d=dt ¼ 0, Eq. (18) implies that the parti-

cle flux is linked to the flux of polarization charge and

weighted electron current. Also, Eq. (17) shows that, due to

this relation, the polarization charge Q at marginality is set

by a balance between the flux of polarization charge, linked

to Reynolds stress (source term), the weighted electron cur-

rent (sink term), and lQ (sink term). The latter effect sum-

marizes our results, namely that zonal flows are damped by

the RMP-induced weighted electron current.

We now turn to the modulational analysis. Assuming a

slow spatial variation of zonal perturbations of potential (i.e.,

zonal flows) and density, we introduce modulations (denoted

by a “d”) of the particle flux and Reynolds stress

@

@t
dn ¼ �

@

@x

dh~vx~ni

dn
dnþ

dh~vx~ni

d/
d/

� �

� DRMP

@2

@x2
ðd/� dnÞ; (19)

q2
s

@

@t

@2

@x2
d/þ l

@2

@x2
d/

� �

¼ �
@2

@x2

dh~vx~vyi

dhni
dhni þ

dh~vx~vyi

dV
dV

� �

� DRMP

@2

@x2
ðd/� dnÞ:

(20)

Applying a Fourier transform with radial wavenumber

q, the system can be cast into matrix form

1 0

0 q2
s

� �
d

dt

dnq
d/q

� �

¼ Mq
dnq
d/q

� �

; (21)

where the matrix Mq is given by

Mq¼

�iq
dCp

dnq
�Dturbq

2�DRMPq
2 �iq

dCp

d/q

þDRMPq
2

�iq
dPReyn

dnq
þDRMPq

2 �iq
dPReyn

d/q

�DRMPq
2

0

B
B
@

1

C
C
A

(22)

with the notation Cp ¼ h~vx~ni;PReyn ¼ h~vx~vyi. Here,
dCp

dnq
,

etc … refer to modulations.

In Sec. III, we will derive a model for zonal mode

growth and subsequently consider the back-reaction of zonal

modes on drift-waves. We will then study the coupled drift-

wave zonal-mode (DW-ZM) nonlinear system.

III. MODULATIONAL STABILITYANALYSIS

A. Model for zonal modes

A modulational stability analysis of the system (21),

considering the growth of zonal modes in a “bath” of broad-

band drift-wave turbulence, yields14

d

dt
dnq þ q2q2

s c�dnq ¼ DRMPq
2ðd/q � dnqÞ; (23)FIG. 2. Competition between flux of polarization charge h~vr~qpoli, with

~qpol ¼ r2
?
~/, and RMP-induced weighted radial electron current dBr

B
hdjri.
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q2q2
s

d

dt
d/q þ ld/q � a�ðd/q � CdnqÞ

� �

¼ �DRMPq
2ðd/q � dnqÞ: (24)

Here, the model parameters a and c are the same as in Ref.

15, i.e., without RMPs.

The quantity C can however be evaluated and it is given

by

C ¼
Xþ1

k?qs¼k
min
? qs

1

1þ k2
?q

2
s

� ½tan �1ðk?qsÞ�
þ1
1 ¼

p

4
’ 0:8;

(25)

where we estimated kmin
? qs � 1, in accordance with a typical

drift-wave spectrum.

B. Back-reaction of zonal modes on drift-waves

In order to close the feedback loop, we now use an equa-

tion for the evolution of the drift-wave turbulence energy �.
The key concept is zonal shearing,15 i.e., that the turbulence

is decorrelated by a radial shear due to the combined zonal

E� B flows (linked to zonal potential d/q) and zonal elec-

tron diamagnetic flows (linked to zonal density dnq). The

evolution of turbulence energy—i.e., drift-wave potential

enstrophy—is linked to the correlation between turbulence

energy and zonal modes, i.e., drift-wave energy changes via

the Reynolds stress work on the flow. The shearing effect is

responsible for this correlation, which is calculated using the

wave kinetic equation (WKE). The details of the derivation

are given in Ref. 14. The resulting evolution equation for the

turbulence energy is:

d�

dt
¼ c�� cNL�

2 � a�jd/q � Cdnqj
2: (26)

Here, the parameters a; c have been defined in Subsection III

A, and the parameter cNL represents nonlinear damping of

drift-waves, i.e., self-saturation. A schematic flowchart of the

derivation of the model is given [Fig. 3].

C. Closure of the model

In order to study analytically the dynamics of the

coupled DW-zonal mode model given by Eqs. (23) and (24),

it is necessary to use a closure relation between zonal density

and zonal potential. This follows from the analogy with the

linear Hasegawa-Wakatani model where there is only a small

deviation from adiabaticity, for
ckxk

Dkk
2
k

� 1, and a large devia-

tion from adiabaticity for
ckxk

Dkk
2
k

>> 1. To justify this so-called

slaving approximation between zonal density and potential

and to obtain the form of this relation, we consider two

regimes: a weak-RMP regime and a strong-RMP regime.

There are two regimes, depending on the evolution timescale

of the quantity “d/q � dnq” as compared to the timescale of

the RMP-induced diffusion of zonal modes D
2

DRMP
(i.e., DRMP

D
2 vs.

collisional friction l), where D is an average radial scale of

zonal modes

(1) the weak-RMP limit, characterized by a small perturba-

tion of the reference drift wave-zonal flow (DW-ZF) sys-

tem without RMPs.

(2) the strong-RMP limit, with hEriZM � �ðkBTe=eÞ
rhniZM, analogous to weakly non-adiabatic linear drift-

waves.

The derivation of a predator-prey model for the weak-

RMP regime is straightforward, whereas it is more compli-

cated in the strong-RMP regime, due to the tendency towards

zonal electron force balance. To overcome this difficulty, we

use in the strong-RMP regime, a simple transformation of

the zonal mode equations, equivalent to using “normal varia-

bles.” The physical interpretation of this transformation,

which is also valid for the linear Hasegawa-Wakatani model,

is the partial decoupling of the perpendicular dynamics from

the parallel dynamics. This partial decoupling is possible

because RMPs only affect the parallel dynamics.

1. Weak-RMP regime

In the weak-RMP limit, the RMP-induced diffusion time

of zonal modes is long compared to other timescales of the

model. We must, therefore, consider the other relevant time-

scales of the model, namely the turbulent diffusion time

sturbð�Þ and the collisional time scoll. These characteristic

times are given by

sturbð�Þ ¼
q2
s

Dturbð�Þ
¼

1

c�
; (27)

scoll ¼
1

l
; (28)

FIG. 3. Flowchart of the derivation for the drift-wave—zonal mode model.
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sRMP ¼
D

2

DRMP

: (29)

Here, we considered an average radial scale D for zonal

modes, i.e., q�1 � D. In the weak-RMP regime, sRMP is long

compared to sturbð�Þ and scoll. There are, therefore, two sub-

regimes: a turbulence-dominated regime and a collision-

dominated regime.

In the turbulence-dominated subregime, turbulent diffu-

sion is the main effect, and the ordering is

sturbð�Þ � scoll � sRMP: (30)

Since turbulent diffusion only affects zonal density (i.e.,

zonal electron diamagnetic flows) and not zonal potential

(i.e., zonal E� B flows), the following approximation holds:

sturbð�Þ
d

dt
dnq � 1: (31)

Using approximation Eq. (31), the continuity Eq. (23) yields

the following relation between zonal density dnq, zonal

potential d/q, and turbulence energy �

dnq ¼
DRMP

DGB�
d/q (32)

with the Gyro-Bohm diffusivity DGB given by

DGB ¼ q2
sc: (33)

Here, we only kept contributions to order 1 in DRMP=ðDGB�Þ
� ðD2=q2

s Þðsturbð�Þ=sRMPÞ. Replacing the zonal density dnq in

Eq. (24) by approximation (32), and dividing by c, we obtain

q2q2
s

1

c

d

dt
d/q þ

l

c
d/q � �� C

DRMP

DGB

� �
a

c
d/q

� �

¼ �
DRMPq

2

c
d/q: (34)

Applying the standard procedure, i.e., multiplying Eq. (34) by

the complex-conjugate d/�q, multiplying the c.c. of Eq. (56)

by d/q, adding both equations and considering zonal modes

having an average radial width D, we obtain the following

evolution equation for the energy of zonal E� B flows

jVj2 ¼ jd/qj
2
at scale q ¼ D�1, in the weak-RMP regime:

1

c

djVj2

dt
þ
l

c
jVj2 � ��

D
2

q2
s

C

csRMP

� �
a

c
jVj2 ¼ �

D
2

q2
s

jVj2

csRMP

:

(35)

Here, we considered only contributions at order 1 in

ðcsRMPÞ
�1

and replaced DGB by its expression (33). Rear-

ranging terms, the evolution equation for zonal flow energy

(35) becomes

1

c

djVj2

dt
¼
a

c
�jVj2 �

l

c
þ C

a

c
þ 1

� �
DRMPq

�2
s

c

� �

jVj2; (36)

where we replaced sRMP by its expression (29). It can be

seen from Eq. (36) that, in the turbulence-dominated subre-

gime, zonal E� B flows are non-linearly generated by pri-

mary drift-waves (first term on the rhs), and linearly damped

due to collisional flow drag and RMP effects (second term

on the rhs). The associated evolution of turbulence energy is

given, in the weak-RMP regime, by

d�

dt
¼ c�� cNL�

2 � a�jVj2 þ 2
DRMPq

�2
s

c
CajVj2; (37)

where we used
DRMPq

�2
s

c� � 1. Physical insight is difficult to

glean directly from Eq. (37), because RMP-coupling term

(last term on the rhs) is independent of turbulence energy,

and thus cannot be interpreted as a “shearing effect.” Rather,

we will analyse the saturated states in Subsection IV A.

In the collision-dominated subregime, zonal flow colli-

sional drag takes the principal role, and the ordering is

scoll � sturbð�Þ � sRMP: (38)

Collisional zonal flow drag only affects zonal E� B flows,

since it originates from ion-ion collisions. This implies that

the zonal density (i.e., zonal electron diamagnetic flows) is

not affected by the zonal flow drag. The zonal potential (i.e.,

zonal E� B flows) alone will be damped and will thus

evolve on a timescale much longer than the collision time

scoll given by expression (28). Hence, the zonal potential dy-

namics is negligible in this regime, i.e.,

scoll

d/q

d

dt
d/q � 1: (39)

Using approximation Eq. (39), Eq. (24) multiplied by scoll

becomes

d/q �
a

c

scoll

sturbð�Þ
ðd/q � CdnqÞ ¼ �

D
2

q2
s

scoll

sRMP

ðd/q � dnqÞ;

(40)

where we expressed a� in terms of the turbulent diffusion

time sturbð�Þ. After some algebra, we obtain the following

relation (appropriate to the collision-dominated subregime),

between zonal potential d/q, zonal density dnq, and turbu-

lence �

d/q ¼ � C
a

l
��

D
2

q2
s

1

lsRMP

� �

dnq; (41)

where we kept only contributions at order 1 in scoll=sturbð�Þ
and replaced the characteristic times by their expression.

Replacing the zonal potential d/q in Eq. (23) by approxima-

tion (41), and dividing by l, we obtain

1

l

d

dt
dnq þ

q2
s

D
2

c

l
�dnq ¼ �

D
2

q2
s

1

lsRMP

1þ C
a

l
�

� �

dnq; (42)
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where we considered only contributions at order 1 in

ðlsRMPÞ
�1

.

After some algebra, we obtain the evolution of the inter-

nal energy N2 ¼ jdnqj
2

1

l

djNj2

dt
¼ �

q2
s

D
2

c

l
þ C

a

l

DRMPq
�2
s

l

� �

�jNj2 �
DRMPq

�2
s

l
jNj2:

(43)

Note that Eq. (43) exhibits no saturated state solutions, it

means that zonal electron diamagnetic flows (i.e., zonal den-

sity) are both linearly and non-linearly damped to a zero

value due turbulent diffusion and RMPs. It follows from the

relation (41) that, in the collision-dominated subregime,

zonal E� B flows are also damped to a zero value.

2. Strong-RMP regime

We consider the following transformation:

duq ¼ q2q2
sd/q þ dnq; (44)

dhq ¼ d/q � dnq: (45)

Here, duq and dhq represent, respectively, the zonal potential

vorticity and the zonal non-adiabaticity. Under this transfor-

mation, Eqs. (23) and (24) for zonal modes become

d

dt
duq þ q2q2

s ðCaþ cÞ�dnq � q2q2
s ða�� lÞd/q ¼ 0; (46)

q2q2
s

d

dt
dhq þ q2q2

s ðCa� q2q2
s cÞ�dnq � q2q2

s ða�� lÞd/q

¼ �ð1þ q2q2
s ÞDRMPq

2dhq;

(47)

where the zonal density dnq and zonal potential d/q can

themselves be expressed in terms of the new variables, as

dnq ¼
1

1þ q2q2
s

ðduq � q2q2
sdhqÞ; (48)

d/q ¼
1

1þ q2q2
s

ðduq þ dhqÞ: (49)

In the strong-RMP limit, the dynamics of zonal nonadia-

baticity is slow compared to the RMP-induced diffusion time

of zonal modes, i.e., j d
dt
dhqj �

DRMP

D
2 dhq. In this regime, the

zonal nonadiabaticity dynamics is thus negligible

sRMP

dhq

�
�
�
�
d

dt
dhq

�
�
�
�� 1 (50)

with the RMP-induced diffusion time of zonal modes sRMP

given by expression (29). From Eq. (47), this implies that

zonal nonadiabaticity is damped by RMPs, whereas zonal

potential vorticity is left unaffected. Simply put, the zonal

density dynamics is effectively slaved to zonal potential dy-

namics. Replacing dnq and d/q by their expressions (48) and

(49) in terms of duq; dhq into Eq. (47), we obtain a relation

between zonal nonadiabaticity dhq, zonal potential vorticity

duq, and turbulence energy �

q2q2
s

1þ q2q2
s

ðCa� q2q2
s cÞ�ðduq � q2q2

sdhqÞ

�
q2q2

s

1þ q2q2
s

ða�� lÞðduq þ dhqÞ

¼ �ð1þ q2q2
s ÞDRMPq

2dhq: (51)

After some algebra, we obtain

dhq ¼ f RMP
q ð�Þduq (52)

with the function f RMP
q ð�Þ given by

f RMP
q ð�Þ ¼ q2q2

s

ðð1� CÞaþ q2q2
scÞ�� l

DRMPq2
: (53)

Here, we used the fact that q2q2
s � 1.

We note parenthetically that the associated relation

between zonal density and zonal potential is

dnq ¼ ½1� f RMP
q ð�Þ�d/q: (54)

Expression (54) shows that, in addition to the dependence on

the linear drive c, which we obtained by a different approach

in Ref. 14, here the relation between zonal density and zonal

potential clearly depends also on the collisional drag l and

DW-ZM coupling parameter a.

Now, we may obtain the evolution equation of zonal

flow energy, in the strong RMP regime. Rewriting the zonal

potential vorticity Eq. (46) in terms of duq and dhq yields

ð1þ q2q2
s Þ

d

dt
duq ¼ ½q2q2

s ða�� lÞ � q2q2
s ðCaþ cÞ��duq

þ ½q2q2
s ða�� lÞ þ q4q4

s ðCaþ cÞ��dhq:

(55)

Note that in the extreme case of very strong RMP ampli-

tude, i.e., for electron force balance dnq ¼ d/q, zonal adia-

baticity is verified dhq ¼ 0. In this limit, Eq. (55) states that

zonal potential vorticity is nonlinearly generated by DW tur-

bulence (first term in the first bracket on the rhs), but also

nonlinearly damped by both turbulent particle diffusion and

electron diamagnetic effects (2nd term in the first bracket).

Now replacing dhq by its expression (52), we obtain an evo-

lution equation for zonal potential vorticity, in the strong

RMP regime

ð1þ q2q2
s Þ

d

dt
duq ¼½q

2q2
s ða�� lÞ � q2q2

s ðCaþ cÞ��duq

þ ½q2q2
s ða�� lÞ

þ q4q4
s ðCaþ cÞ��f RMP

q ð�Þduq: (56)
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Applying the standard procedure, i.e., multiplying Eq.

(56) by the c.c. du�q, multiplying the c.c. of Eq. (56) by duq,

adding both equations and considering zonal modes to have

an average radial width D, i.e., q � D�1, we obtain the evo-

lution equation for zonal potential enstrophy jUj2 ¼ jduqj
2

at

scale q ¼ D�1

djUj2

dt
¼

q2
s

D
2
½ða�� lÞ � ðCaþ cÞ��jUj2

þ
q2
s

D
2
½ða�� lÞ þ

q2
s

D
2
ðCaþ cÞ��fRMPð�ÞjUj

2; (57)

where we used the fact that
q2
s

D
2 � 1.

Here, the function fRMPð�Þ is given by

fRMPð�Þ ¼
q2
s

D
2

ð1� CÞasRMP þ
q2
s

D
2
csRMP

� �

�� lsRMP

� �

:

(58)

Note that the quantity sRMP

sturbð�Þ
is proportional to the ratio

between the radial diffusion time of zonal modes due to

RMPs and the radial turbulent diffusion time sturbð�Þ ¼
q2
s

Dturbð�Þ
,

where Dturbð�Þ ¼ q2
sc� is the turbulent diffusivity.

We next derive the associated turbulence energy evolu-

tion, in the strong-RMP regime. Expressing dnq and d/q in

terms of duq and dhq using relations (48) and (49) and subse-

quently replacing dhq by its expression (52), we obtain

d�

dt
¼ c�� cNL�

2

� 1� 2
q2
s

D
2

� �

ð1�CÞ þ 1þ
q2
s

D
2
C

� �

fRMPð�Þ

� �2

a�jUj2;

(59)

where we considered an average radial scale for zonal

modes, i.e., qD ¼ 1, and we used q2
s=D

2 � 1. Equation (59)

suggests that, in the strong-RMP regime, turbulence seems

to be more strongly damped by the zonal modes compared to

the case without RMPs. This enhanced damping is repre-

sented by the contribution proportional to the small function

fRMPð�Þ in the last term on the rhs of Eq. (59). It can be

understood physically as the increased shearing due to

the electron diamagnetic flows. A detailed analysis, which

will be given in Sec. IV, is needed to confirm this

suggestion.

We summarize our findings, before turning to the analy-

sis of saturated states, and associated power threshold for the

transition between different states of the system. Depending

on the value of RMP amplitude, there is a weak-RMP re-

gime, with two sub-regimes, depending on the value of colli-

sional friction l, and a strong-RMP regime.

In the weak-RMP regime MaxfDRMP

q2
sl

; aDRMP

cq2
sl
g � 1, the

energy associated with zonal modes, and the corresponding

turbulence energy evolve according to

d�

dt
¼ c�� cNL�

2 � a�jVj2 þ 2
DRMPq

�2
s

c
CajVj2; (60)

djVj2

dt
¼ a�jVj2 � 1þ C

a

c
þ 1

� �
DRMPq

�2
s

l

� �

ljVj2: (61)

In the strong-RMP regime DRMP

q2
sl
� 1, the potential enstrophy

associated to zonal modes and corresponding turbulence

energy evolve as

d�

dt
¼ c�� cNL�

2

� 1� 2
q2
s

D
2

� �

1� Cþ 1þ
q2
s

D
2
C

� �

fRMPð�Þ

� �2

a�jUj2;

(62)

djUj2

dt
¼

q2
s

D
2
½ða�� lÞ � ðCaþ cÞ��jUj2

þ
q2
s

D
2
½ða�� lÞ þ

q2
s

D
2
ðCaþ cÞ��fRMPð�ÞjUj

2
(63)

with the small function fRMPð�Þ given by expression (58).

Note that in the case without RMPs corresponding

to negligible electron diamagnetic effects, i.e., for DRMP ¼ 0

and
duq
q2q2

s
¼ dhq ¼ d/q, Eqs. (60) and (62) become identical,

and similarly with Eqs. (61) and (63), recovering the well-

known DW-ZF predator-prey model

d�

dt
¼ c�� cNL�

2 � a�jVj2: (64)

djVj2

dt
¼ a�jVj2 � ljVj2: (65)

In Sec. IV, we calculate analytically the energy associ-

ated with zonal modes, the corresponding turbulence energy,

and we show that RMPs modify the power threshold, or c

threshold, for the transition between possible states.

IV. STATES OF THE COUPLED DRIFT WAVE—ZONAL
MODE MODEL

We now study the saturated turbulence states of the sys-

tem. There are two non-trivial states, i.e., where � and jVj2,
(jUj2 in the strong-RMP regime) do not simultaneously van-

ish. The first possible state is characterized by the absence of

zonal modes: jVj2 ¼ 0 (jUj2 ¼ 0 in the strong-RMP regime),

and a high turbulence level, while the second possible state

is characterized by the presence of zonal modes and a lower

turbulence level. To obtain the turbulence energy of the ZM-

dominated state, valid for arbitray values of the RMP cou-

pling parameter DRMP, we write the (quasi) linear system

(23) and (24) in matrix form with d=dt ¼ 0 and set the deter-

minant of the matrix to 0. To obtain the zonal mode energy

of the ZM-dominated state, we use a slaving approximation

to express the zonal density dnq in terms of the zonal poten-

tial d/q. The particular form of the slaving approximation

dnq � ðc�=DRMPÞd/q used in our previous work14 is only

valid in the weak-RMP regime, whereas in the strong-RMP

regime, a different slaving approximation must be used. In

the present work, we will use both slaving approiximations,

since we wish to study the influence of RMPs on the zonal
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mode energy—associated to the L-H transition—in both

weak-RMP and strong-RMP regimes.

We first derive the turbulence energy in a saturated

state.

A. Saturated turbulence energy states

Writing the (quasi) linear systems (23) and (24) in ma-

trix form with d=dt ¼ 0, there are two possible states. The

first state, refered to as Low confinement state (L) is charac-

terized by no zonal flows, and a high turbulence level, and is

unaffected by RMPs

�L ¼
c

cNL

: (66)

Here, we obtained �L by setting jd/q � Cdnqj
2 ¼ 0 in Eq.

(26).

The turbulence energy � in the flow-dominated state is

obtained by setting the determinant of the (quasi) linear sys-

tem (23) and (24) to zero. It is given by the following quad-

ratic equation for �:

�2 �
1

a
l�

DRMP

q2
s

ð1� CÞ
a

c
� 1

� �� �

��
1

ac
l
DRMP

q2
s

¼ 0:

(67)

The physical (positive) solution of Eq. (67) has 2 possi-

ble forms, depending on the value of the bracketed term,

i.e., on the value of c; DRMP; and l. At fixed l, this

implies a codimension-2 (DRMP; c) bifurcation with RMP pa-

rameter DRMP and linear drive, i.e., input power c. The two

subregimes are

1. Low power c<ð12CÞa

In this case, the quantity ð1� CÞ a
c
� 1 is positive, and

the solution is

�1 ¼
1

2a
l�

DRMP

q2
s

�
�
�
�ð1� CÞ

a

c
� 1

�
�
�
�

� �

þ

ffiffiffiffiffiffi
D1

p

2
(68)

with D1 the discriminant given by

D1 ¼
1

a2
l�

DRMP

q2
s

�
�
�
�ð1� CÞ

a

c
� 1

�
�
�
�

� �2

þ
4

ac
l
DRMP

q2
s

: (69)

2. High power c>ð12CÞa

In this case, the quantity ð1� CÞ a
c
� 1 is negative, and

the solution is

�2 ¼
1

2a
lþ

DRMP

q2
s

�
�
�
�1� ð1� CÞ

a

c

�
�
�
�

� �

þ

ffiffiffiffiffiffi
D2

p

2
(70)

with D1 the discriminant given by

D2 ¼
1

a2
lþ

DRMP

q2
s

�
�
�
�1� ð1� CÞ

a

c

�
�
�
�

� �2

þ
4

ac
l
DRMP

q2
s

: (71)

In the weak-RMP regime DRMP

q2
sl
� 1, we see after some alge-

bra that the turbulence energy is identical in both subregimes

�1 � �2 � 1þ C
a

c
þ 1

� �
DRMP

q2
sl

� �
l

a
: (72)

In the strong-RMP regime DRMP

q2
sl
� 1, we see after some alge-

bra that the turbulence energies of the two subregimes are

different

�1 � 1þ
a

ð1�CÞa� c
� 1

� �
q2
scl

½ð1�CÞa� c�DRMP

� �

� ð1�CÞ
a

c
� 1

� �
DRMP

q2
sa

(73)

�2 � 1þ
a

c� ð1�CÞa
þ 1

� �
q2
scl

½c� ð1� CÞa�DRMP

� �

� 1� ð1� CÞ
a

c

� �
DRMP

q2
sa

: (74)

We now separate our analysis into the weak-RMP and

strong-RMP regimes, to calculate the zonal mode energy.

B. Weak-RMP regime

The turbulence energy (72) can be written

� ¼ ½1þ gðcÞD̂RMP�
l

a
: (75)

This includes a normalized RMP parameter D̂RMP, and a

coefficient gðcÞ, depending on linear drive c, given, respec-

tively, by

D̂RMP ¼
DRMP

q2
sl

: (76)

gðcÞ ¼ C
a

c
þ 1: (77)

Expression (75) is identical to the expression we obtained in

our previous work in the weak-RMP limit.14

Next, using Eq. (60) in a saturated state, we express, in

the weak-RMP regime, the zonal flow energy jVj2 in terms

of the turbulence energy

jVj2 ¼ 1þ 2
DRMP

q2
s c�

C

� �
c

a
�
cNL

a
�

� �
; (78)

where we used DRMP=ðq
2
s c�Þ � 1.

Replacing � by its expression (75), we obtain the zonal

flow energy in the weak-RMP regime

jVj2 ¼ 1þ ð1� gðcÞÞ2D̂RMP

a

c
C

� �

�
c

a
� ½1þ gðcÞD̂RMP�

cNLl

a2

� �
:

(79)

055903-8 M. Leconte and P. H. Diamond Phys. Plasmas 19, 055903 (2012)



Equation (79) shows that the threshold c ¼ cweak
c (linked to

the power threshold at transition P ¼ Pc) for the transition

from the low confinement regime (L) to the enhanced con-

finement regime (ZM-dominated) in the weak-RMP regime

is given by

c� 1þ C
a

c
þ 1

� �

D̂RMP

� �
cNLl

a
¼ 0; (80)

where we replaced gðcÞ by its expression (77).

Note that in this model, c ¼ cð a
Ln
Þ with Ln the mean den-

sity gradient scale-length, and the particle flux is

C ¼ �Drhni, corresponding to c ¼ cð a
Lp
Þ and Q ¼ �vrp,

with p the pressure, v the collisional diffusivity and Q the

energy flux i.e., input power, since we assume uniform tem-

perature. Equation (80) yields a quadratic equation for c with

physical solution (i.e., positive since power is a positive

quantity)

cweak
c ¼ 1þ 1þ C

a2

cNLl

� �

D̂RMP

� �
cNLl

a
: (81)

In presence of RMPs D̂RMP > 0, the power threshold (81) is

clearly increased over its reference value without RMPs. The

relative threshold variation is given by

cweak
c � c0

c

c0
c

¼ 1þ C
a2

cNLl

� �

D̂RMP: (82)

Hence, our model predicts, in the weak-RMP regime, an

increase of the L-H power threshold, near transition. Such

an increase in power threshold has been observed

experimentally.6,17

We now consider the analysis of the strong-RMP regime.

C. Strong-RMP regime

We seek the zonal potential enstrophy jUj2. To obtain it,

we use the turbulence energy evolution equation, in a satu-

rated state. The evolution equation for turbulence energy,

given by Eq. (26), can be expressed in terms of zonal poten-

tial vorticity duq and zonal nonadiabaticity dhq. In terms of

duq and dhq, it reads

d�

dt
¼ c�� cNL�

2 � a�

�
�
�
�ð1� CÞduq þ 1�

q2
s

D
2
C

� �

dhq

�
�
�
�

2

;

(83)

where we used qqs � qsD
�1 � 1.

Replacing dhq by its expression (52), we obtain

d�

dt
¼ c�� cNL�

2 � a� 1� Cþ 1�
q2
s

D
2
C

� �

fRMPð�Þ

� �2

jUj2:

(84)

In steady-state, this yields

c� cNL�� a 1� Cþ 1�
q2
s

D
2
C

� �

fRMPð�Þ

� �2

jUj2 ¼ 0:

(85)

The potential entrophy of zonal modes, in the strong-

RMP regime, is thus given by

jUj21;2 ¼
1

ð1� CÞ2
1� 2 1�

q2
s

D
2
C

� �
fRMPð�1;2Þ

1� C

� �
c� cNL�1;2

a

(86)

with �1;2 given by expression (73) and (74), respectively.

Expression (86) clearly shows that, in the strong-RMP

regime (jfRMPð�Þj � 1), the potential enstrophy associated to

zonal modes is a decreasing function of the turbulence

energy. The threshold for the transition from low confine-

ment state � ¼ c=cNL; jUj
2 ¼ 0 to flow-dominated state � ¼

�1;2; jUj
2 ¼ jUj21;2 is given for the first subregime c <

ð1� CÞa by

c� 1þ
a

ð1� CÞa� c
� 1

� �
q2
s cl

½ð1� CÞa� c�DRMP

� �

� ð1� CÞ
a

c
� 1

� �
cNLDRMP

q2
sa

¼ 0 (87)

and for the second subregime c > ð1� CÞa by

c� 1þ
a

c� ð1� CÞa
þ 1

� �
q2
s cl

½c� ð1� CÞa�DRMP

� �

� 1� ð1� CÞ
a

c

� �
cNLDRMP

q2
sa

¼ 0: (88)

Note that in the extreme limit
q2
sl

DRMP
! 0, the second term

in the bracketed terms of Eqs. (87) and (88) vanish and the

associated power thresholds are

c
strong
1 � ð1� CÞa; (89)

c
strong
2 � 1� ð1� CÞ

q2
sa

2

cNLDRMP

� �
cNLDRMP

q2
sa

: (90)

As opposed to the weak-RMP regime where the power

threshold was set mainly by the flow friction l, in the strong-

RMP regime, we see from Eqs. (89) and (90) that the power

threshold is set mainly by the DW-zonal mode nonlinear

coupling parameter a or by the RMP-induced flow friction
DRMP

q2
s

, depending on the subregime considered. The latter sub-

regime is similar to the weak-RMP regime, i.e., zonal modes

are damped and the power threshold varies approximately

linearly with RMP coupling parameter DRMP. In the former

subregime however, the power threshold is approximately

independent of the RMP coupling parameter, i.e., the RMP

effect saturates. This suggests that for this regime of parame-

ters, there exist a critical RMP amplitude above which RMPs

have almost no impact on the L-H transition. We will inves-

tigate more deeply this regime in the future.

V. CONCLUSION

This work was motivated by recent experimental results

showing evidence for the damping of geodesic acoustic

mode (GAM) zonal flows by resonant magnetic perturba-

tions, i.e., a damping of the m ¼ 0, n ¼ 0 potential
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component of the GAMs.13 GAMs are secondary structures

which are caused by the coupling between axisymmetric E�
B flows and pressure up-down asymmetry due to the toroidal

curvature.18,19 They have an oscillatory nature, with a fre-

quency xGAM given by x2
GAM � 2c2

s=R
2 with cs the sound

speed and R the major radius. In the present work, to keep

analytical calculations tractable, we considered the modula-

tional growth of non-oscillatory E� B flows (also called

zero-frequency zonal flows). Since GAMs are a type of zonal

flows,18 our analysis can partly explain the observations of

Ref. 13. However, there is an additional coupling mechanism

for GAM, due to toroidal curvature. For the sake of com-

pleteness, we give a heuristic model for the damping of

GAMs [Appendix]. It seems to show that, in presence of res-

onant magnetic perturbations, the axisymmetric pressure

(here, we consider density) component n00, as well as the up-

down asymmetric potential component /01 can no longer be

neglected and play an important role. RMPs directly couple

/00 to n00, as in the case of zero-frequency zonal flows (the

model developed throughout this article), but also directly

couple n01 to /01. Note that parallel flows, which are also a

component of GAMs, are not taken into account in the heu-

ristic model given in Appendix. We show in Appendix that,

in order to fully describe RMP effect on GAMs, one must

consider the dynamics of axisymmetric density hni and up-

down asymmetric potential h/ sinhi, with h the poloidal

angle. Nonetheless, some physical insight can be gleaned

from the heuristic model (A7) and (A8). The first term on the

rhs of Eq. (A8) shows that the weighted radial current
dBx

B
hdjxi can compete against the flux of polarization charge

h~vx~qpoli, resulting in an RMP-induced damping of polariza-

tion charge Q0. This is analog to the RMP-induced damping

of zero-frequency zonal flows shown throughout this article.

A new feature of this heuristic model for GAMs, compared

to zero-frequency zonal flows, is the fact that the contribu-

tion dBx

B
hjksinhi—also a sort of weighted current—can com-

pete against the flux h~vx~nsinhi. Note that the latter flux is a

particle flux, but it is different from the “standard” particle

flux h~vx~ni considered throughout this work. According to

Ref. 18, the flux h~vx~nsinhi is the main drive for GAMs.

Hence, the competition of the weighted current against this

flux gives a possible explanation for the damping of GAMs.

We now summarize the main results of this article concern-

ing the zero-frequency zonal flows.

In this work, we first generalized the Hasegawa-

Wakatani model to include RMPs, as a tool to analyse the

effect of RMPs on zonal flow dynamics. For this purpose, we

then applied a modulational stability analysis to our model,

using the wave kinetics formalism. Associated to an evolu-

tion equation for DW turbulence energy, we obtained a

coupled DW-ZM model in two different regimes, depending

on the RMP coupling parameter D̂RMP ¼
DRMP

q2
sl

, with the diffu-

sion coefficient DRMP ¼
dB2

r

B2 Dk representing the RMP-

induced diffusion of zonal modes. This model is a general-

ization of the standard DW-ZF model predator-prey model.15

The weak-RMP regime, characterized by DRMP

q2
sl
� 1, exhibits

only small modifications compared to the reference case

without RMPs. The strong-RMP regime, characterized by
DRMP

q2
sl
� 1, shows a tendency to (mesoscale) electron force

balance. The DW-ZM model has two possible states, thus a

bifurcation is possible for a critical value of the linear drive,

i.e., input power. Below threshold, the system is in a low

confinement mode (Lmode-like), characterized by a high tur-

bulence energy and no zonal modes. Above threshold, the

system is characterized by an enhanced confinement, i.e.,

lower turbulence energy and the presence of zonal modes.

This is similar to the reference case without RMPs. How-

ever, in presence of RMPs, the threshold for the bifurcation

between these two states depends on RMP amplitude. In the

weak-RMP regime, the relative threshold variation scales

linearly with the RMP coupling parameter. Hence, in the

weak-RMP regime, the variation in power threshold scales

as the square of RMP amplitude dBr

B
, as the inverse of the col-

lisional zonal flow friction l, and as the square-inverse of

the sound gyroradius qs. We note that stochastization of

magnetic field lines not taken into account in our model can

play an important role and will be studied elsewhere. Such

field-line stochastization effects can be modeled in part,

using a concept of hyper-resistivity—increasing with RMP

amplitude—in Ohm’s law relating djk to d/ and dn.
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APPENDIX: HEURISTIC MODEL FOR RMP EFFECT ON
GAMS

For the sake of completeness, we extend the polarization

charge balance model Eqs. (15) and (16) to include toroidal

curvature effects. This yields a heuristic model for GAMs.

We start from our generalized Hasegawa-Wakatani model

(1) and (2), including curvature terms

@

@t
nþ f/; ng � rkjk ¼ 2Ĝ/; (A1)

q2
s

@

@t
r2
?/þ q2

sf/;r
2
?/g � rkjk ¼ �Ĝn; (A2)

where the curvature operator Ĝ is given by Ĝ ¼ sinh
@
@xþ

cosh
r0

@
@h, with r0 a radius of reference.

Multiplying Eq. (A1) by sinh and flux-surface averaging

the resulting equations, we obtain

@

@t
hn sinhi þ

@

@x
h~vx~nsinhi � hsinhrkjki ¼

@

@x
h/i; (A3)

q2
s

@

@t

@2

@x2
h/i þ q2

s

@

@x
h~vxr

2
?
~/i � hrkjki ¼ �

@

@x
hn sinhi:

(A4)

We now define the following quantities:

055903-10 M. Leconte and P. H. Diamond Phys. Plasmas 19, 055903 (2012)



N0 ¼

ð ð ð

hnidV; Q0 ¼ �
q2
s

D
2

ð ð ð

h/idV; (A5)

and

N1 ¼

ð ð ð

hnsinhidV; Q1 ¼ �
q2
s

D
2

ð ð ð

h/sinhidV: (A6)

Integrating radially Eqs. (A3) and (A4), we obtain the

following heuristic model for RMP effect on GAMs:

dN1

dt
¼ �S0½h~vx~nsin hi �

dBx

B
hjksin hi�

xþdx
x�dx

�
1

r0

ð ð ð
dBh

B
hjkcos hidV þ

ð ð ð
@

@x
h/idV; (A7)

dQ0

dt
¼ S0

"

h~vx~qpoli �
dBx

B
hdjxi

#xþdx

x�dx

� lQ0

þ

ð ð ð
@

@x
hnsin hidV: (A8)

Here, the standard coupling giving GAMs their oscilla-

tory nature occurs through the last term on the rhs of Eqs.

(A7) and (A8).

The RMP-induced weighted radial current dBx

B
hdjxi pres-

ent in Eq. (A8) directly couples Q0 to the evolution of N0, as

in the case for zero-frequency zonal flows

dBx

B
hdjxi

� �xþdx

x�dx

� �Dk
dBx

B

� �2
1

D

D
2

q2
s

ð�Q0Þ � N0

� �

: (A9)

Additionally, the RMP-induced contribution dBx

B
hjksinhi in

Eq. (A7) directly couples N1 to the evolution of Q1

dBx

B
hjksinhi

� �xþdx

x�dx

� �Dk
dBx

B

� �2
1

D

D
2

q2
s

ð�Q1Þ � N1

� �

:

(A10)

Hence, to describe RMP effect on GAM Zonal Flows, one

needs to write evolution equations for N0 and Q1, in addition

to Eqs. (A7) and (A8). As we only give a heuristic model in

the present work, we will present the full set somewhere else.
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