A closer look at mean $E \times B$ shearing rate in negative triangularity tokamaks

(under review in NF 2023)

Rameswar Singh and P H Diamond CASS, UCSD

US TTF May 3 2023, Madison

Acknowledgement: T S Hahm for useful discussions. Supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

Effect of triangularity on confinement, fluctuations and L-H transition

What about mean ExB shear?

How to reconcile confinement improvement in NT L Mode with enhanced L-H power threshold?

• Understanding flux surface shaping effects on turbulence saturation mechanisms is the key.

ExB shear suppression of turbulence is the holy grail of physics of transport barriers

• ExB flow shear reduces radial size of eddies and transport.

- Turbulence quenches when shearing rate $\omega_E > \Delta \omega \sim \gamma_{lin}$ [BDT 90]
- As a result transport is reduced and pressure gradient steepens.
- Transport bifurcation due to mean ExB shearing
 - ETB formation during L-H transition
 - ITB formation in high β_p reversed q discharges

Geometry dependence of mean ExB shearing rate ω_E

Shape dependence of shearing rate is inferred from shape dependence of

Variation of mean ExB shearing rate with triangularity δ

- Max shear off the outboard mid-plane for NT \rightarrow Shearing is less effective for $k_x = 0$ modes i.e, the modes ballooning at $\theta = 0$.
- The peak shearing bifurcates at $\delta_{crit} \leq 0$.
 - Why? The Jacobian is a nonlinear function of δ which exhibits spontaneous symmetry breaking.
 - Peak shears move toward good curvature region.

- Shear at $\theta = 0$: (for fixed $\Phi_0''(\psi)$)
 - \downarrow with increasing NT.
 - Weaker for NT than for PT. Note that fluctuations balloon at $\theta = 0$. Thus shearing efficiency $\downarrow \Longrightarrow P_{L \to H,th} \uparrow$.

Variation of mean ExB shearing rate with triangularity gradient S_{δ}

On increasing $|S_{\delta}|$:

- Shearing rate decreases.
- δ_{crit} moves along δ^- .

- ➡Radial profile of triangularity matters!
- ➡Can triangularity profile can be tailored to boost mean ExB shear?

Shafranov shift induced transport bifurcation

ITB formation in high-β_p regime is often linked to transport bifurcation due to turbulence stabilization by shafranov shift due to mag drift reduction/reversal, *ignoring* the mean ExB shear effect. [S Ding et *al* PoP 2017, J McClenaghan et *al* PoP 2019, G M Staebler et *al* PoP 2017]

Feedback loop for Shafranov shift induced transport bifurcation

- But... like it or not mean shear *exist* in high- β_p discharges!
- So how does mean shear and shafranov shift interact ?
- Interplay of mean ExB shear, Shafranov shift and NT?

Variation of mean ExB shearing rate with Shafranov shift gradient R'_0

On increasing $-R'_0$:

- Shearing rate increases for all δ .
- δ_c moves toward δ^- on increasing $-R'_0$.
- Key reason \rightarrow flux compression.

Significant for:

- high β_p regime (i.e, RS ITB) as $R'_0 \propto \frac{r}{R_0} \beta_p$
- NT shapes
 - as $\beta_p(\delta^-) > \beta_p(\delta^+)$
 - Numerical MHD equilibrium study shows $R'_0(\delta^-) > R'_0(\delta^+)$ even for fixed β_p .

Mean ExB shearing rate increases with elongation κ and elongation gradient S_{κ}

Conclusions

Pure geometrical modulation to ExB shearing rate as $PT \rightarrow NT$ shapes

- Max shear off the outboard mid-plane for NT as \rightarrow Shearing is more effective for $k_x \neq 0$ modes for NT.
- The peak shearing bifurcates at δ_{crit} ≤ 0. Peak shears move toward good curvature region and the shear at θ = 0 decreases with increasing NT. Note that fluctuations balloon at θ = 0. Thus shearing efficiency ↓ ⇒ P_{L→H,th} ↑.
- Shearing rate decreases with increasing triangularity gradient S_{δ} and increases with increasing elongation κ , and elongation gradient S_{κ} .
- Direct effect of Shafranov shift gradient $-R'_0$ on shearing rate: Shearing rate increases with increasing $-R'_0$ for all δ . Key reason \rightarrow flux compression. Significant for high β_p regime and NT shapes.

These results has implications not just for L-H transition for NT but also for ITB discharges in PT and NT(proposed)!

Implications I

• Shafranov shift affects turbulence in 2 distinct ways:

(I) Stabilizes turbulence by reduction/reversal of magnetic drifts

(II) Directly enhances the mean shear, \rightarrow additional turbulence suppression

Both can cause bifurcation to enhanced confinement state independently. Bifurcation by (I) is often invoked as a mechanism of confinement improvement in high- β_p regime, *ignoring* the mean shear effect.

Enhanced mean ExB shearing by Shafranov shift provides a +ve feedback on the feedback loop of the shafranov shift induced transport bifurcation.

Shafranov shift also has a +ve effect on the mean ExB shear induced transport bifurcation, not only through a reduction of the linear growth rate but also through the enhanced ExB sharing rate.

Both (I) and (II) can work in tandem to reduce the ∇P_{crit} for the onset of ITB in reversed shear PT shape

Implications II

- For realistic MHD equilibrium, Shafranov shift \uparrow when PT \rightarrow NT
 - shear increase by enhanced shafranov shift competes with shear reduction at $\theta = 0$ when PT \rightarrow NT

• For experimental equilibrium, parametric dependencies $R'_0 \equiv R'_0(\delta)$, $\kappa \equiv \kappa(\delta)$, $S_{\kappa} \equiv S_{\kappa}(\delta)$, $S_{\delta} \equiv S_{\delta}(\delta)$ from numerical codes can help calculate shear accurately, - - -in progress!

For the experimentalists

- Mean ExB Shearing is maximal off the mid-pane for NT:
 →Eddy tilting should be strongest off the mid-plane.
 - Direct imaging using gas-puffing?
 - Joint pdf of radial and poloidal velocity fluctuations (i.e., $\tilde{v}_r \& \tilde{v}_{\theta}$) should show max tilting (most-correlated) off the mid-plane for NT.

- Shafranov shift gradient R'_0 directly boosts the mean ExB shear:
 - Re-assess the role of mean ExB shear in high- β_p reverse shear discharges.