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Zonal flows are large scale azimuthally symmetric plasma potential perturbations spon-
taneously generated from small scale drift-wave fluctuations via the action of Reynolds
stresses. A positive feedback is provided due to the modulations of the wave packets by
the shearing effect in the large scale flow. As a result, the propagation of small scale wave
packets is accompanied by the instability of a low frequency, long wavelength component.
There are two distinct regimes of this instability: resonant type shear flow instability, when
the shear flow is in the resonance with the wave packet group velocity, and coherent, when
the growth rate is large compared to the characteristic width of the wave packet so that
different harmonics grow coherently. For plasma fluctuations with significant pressure fluc-
tuations (such as ion temperature gradient driven modes) the Reynolds stress is modified
with diamagnetic effects. In a finite 8 plasma the electromagnetic effects generally act to
reduce the growth rate of the zonal flows instability due to partial compensation between
of the electrostatic Reynolds stress and the electromagnetic Maxwell stress. In generic
electromagnetic turbulence, the generation of the zonal flows can be accompanied by the
generation of the large scale, poloidally symmetric, magnetic field -”zonal” field. Contrary
to the case of the zonal flow instability, which does not require any dissipation, the gener-
ation of zonal fields is only possible when there is a finite dissipation such as that due to
the wave-particle (Landau) interactions. There is a certain analogy between the structure
of Reynolds stress in two dimensional magnetized plasmas and geostrophic fluids, so that a
similar mechanism of the zonal flow instability could also be responsible for the generation
of mean flows in the atmospheres of the rotating planets.

1 Introduction

The transfer of wave energy towards the long wavelength region and the formation of
large scale structures (zonal flows and convective cells) is a result of the well known inverse
cascade in two-dimensional and quasi two-dimensional fluids.! Such large scale structures
are frequently observed in the turbulent motions of plasmas and geostrophic fluids*™® (see
also references in Ref. 4,5). The strongly sheared flow associated with such localized
structures leads to turbulence suppression and enhancement of confinement in a tokamak
that has been extensively studied, both theoretically and experimentally, in recent years.”2°
It appears that zonal flows?1"?2 are an important element of drift wave dynamics regulation
and may strongly affect anomalous transport in a tokamak. [Zonal flows are defined here
as poloidal and toroidally symmetric (¢, = g9 = 0) perturbations with a finite radial scale
¢! larger than the scale of the underlying small scale turbulence, ¢. < k., q is the wave



vector for large scale motions, k is the wave-vector of small scale turbulence, and r, 6, and
z are axis of a straight cylindrical tokamak.] Recent advances in numerical simulations of
tokamak plasmas?? have unambiguously demonstrated that a certain level of E x B flow
(in the poloidal direction) triggers a transition to a state with greatly reduced anomalous
transport. The suppression of the turbulence by the sheared E x B flow theoretically
investigated in Refs. 11-13 has also been confirmed in experiment.!* There is a clear
indication that zonal flows play a critical role in the dynamics of drift wave turbulence and
its self-regulation. The general theory of zonal flows and the self-regulation of the drift-
wave turbulence in a tokamak has been presented in Ref. 23 (see also earlier works on the
generation of zonal flows in drift and Rossby wave turbulence?*33). Here, we review the
theory of zonal flows with emphasis on toroidal ion temperature gradient (TITG) driven
turbulence and electromagnetic effects. We also analyze the possibility of the generation of
large scale, poloidally symmetric, magnetic field. Because of a similarity between equations
for drift waves in plasma and Rossby waves in the rotating atmospheres,3* development of
the theory of zonal flows is also important in the geophysics context.*6

2 Momentum deposition into the large scale flow from
small scale fluctuations

To describe the dynamics of a large-scale plasma flow that varies on a longer time
scale compared to the small-scale fluctuations we employ a multiple scale expansion thus
assuming that there is a sufficient spectral gap separating large-scale and small-scale mo-
tions. The electrostatic potential is represented as a sum of fluctuating and mean quantities
H(X,x,Tt) =p(X,T)+¢(X,x,T,t),where ¢(X,T) is the mean flow potential. A similar rep-
resentation is done for other plasma parameters such as pressure.

The generation of the mean flow is conveniently described by the total plasma momen-
tum balance that can be written as®>
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The right hand side here describes the momentum exchange with the electromagnetic field
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In the electrostatic case the exchange with electromagnetic field is not important, so the
mean flow is generated as a result of the momentum and energy exchange between the zonal
flow and small scale fluctuations.?633 This has been confirmed also by direct calculations.3
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In the presence of the zonal flow the plasma momentum content is dominated by the
slow E x B drift of the ion component
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When ions are magnetized the momentum drive is determined by the ion Reynolds stress
tensor n;m;v;v; ~ n;m;Vevg. Then
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Averaging (4) over the fast, small scales, we obtain the evolution equation for the mean
flow 5
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Ré=b-Veéx VV3 ¢, (6)

Here, By is the equilibrium magnetic field, b = By/By. The electrostatic Reynolds stress
(6) can be written in the form

R? = (9) = 95) (0:00,9) + 9:0, ((9:6)° — (9,0)°) - (7)

After averaging over the fast scale we obtain in the leading order

R = (V2= V2) (3:00,0) + V.V, (0:0) ~ 0,0 (8)

where we use V for the derivatives over the slow (large scale) and 0 for the derivatives over
the fast (small scale) variables. This general expression is useful for investigation of zonal

flow (Vg # 0, V, = 0) and streamers (V, =0, V, #0).

The momentum exchange between plasma and electromagnetic waves becomes impor-
tant for fluctuations with a significant magnetic component, e.g. Alfven wave fluctuations.
Then the contribution of the Maxwell stress becomes important
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In the ideal MHD ordering w =~ kjva, the contribution of the Maxwell stress due to
magnetic fluctuations is of the same order as the Reynolds stress
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There is a complete cancellation between two components in pure Alfvenic state w = kjva.

In a plasma of the finite temperature, the ion Larmor radius effects become important.
The contribution of such effects is described by the viscosity tensor V- (;)3739 . In the
limit of a small but finite Larmor radius, the viscosity tensor can be approximated by the
standard gyro-viscosity tensor,*”! see also Section 5. In general case, full kinetic calcula-
tions are required.>” 3" The variations of plasma density in Eq.(9) may also contribute to
the momentum drive which is essentially a mechanism of the Stringer spin-up.*>** Such
density variations can often be driven by externally injected electromagnetic waves.?"4
In toroidal geometry the effects of plasma pressure asymmetry may also contribute to the
zonal flow drive.%d

3 Wave packet modulations and wave-action invariants

Modulations of the wave packets by the large scale structures are described by a WKB
type wave kinetic equation for the quanta density of small scale fluctuations that is con-
served along the rays. This method was originally proposed to describe the interaction of
high frequency plasmons (Langmuir waves) with low frequency ion sound perturbations.6
In studies of drift wave dynamics, it has been assumed*”®® that the relevant quantity that
is conserved in the presence of slow variations is the drift-wave action density. It is well
known that the standard wave action variables C} associated with the number of wave
quanta ng, ng = \C’k|2 = Ej/wy, where Ej is the wave energy, and wy is the wave fre-
quency, is the basis for a Hamiltonian form of the wave-wave interaction equations. It has



been noted3?4? however that the normal variables used to describe self-interaction between
small scale fluctuations without the shear flow are modified by the flow and may not be
suitable for a system with a mean flow. Thus, in the presence of a shear flow, one can
expect a new form of canonical variables and associated action invariants. It was also
shown directly?»0 that for some models of drift waves the conserved action-like quantity
(pseudo-action) is different from the usual definition of the wave action defined as the ratio
of the wave energy to the wave frequency. The latter definition also fails when there are
no oscillating eigen-modes, such as in ideal fluid, so that an alternative definition of the

action-like integral is required.?!5?

A generic system of the drift wave fluctuations interacting with the mean flow can be
written in the form

¢'f tiond + [ PpLyw-po5 o7, =0, (11)

where wy, = w(k) is the frequency of the linear mode with a wave-vector k, and may include
an imaginary part corresponding to the wave growth and decay. In the spirit of the scale
separation we represent the field into the large-scale ¢ and small-scale ¢; components;
¢ = 0 outside a shell | k |[<e < 1, ¢y =0 for | k |< e. The self-interaction of small-scale
fields is small compared to the interaction with the mean flow.*> The equation for the
evolution of the wave spectrum is obtained in the form

0 .

o (0702) +i(on+wp) 6707+ 07 [(Polos 0507, + 67 [ ol g5 =0
(12)

The small-scale turbulence is described by the spectral function (Wigner function) Iy (x, %),

and defined as follows

/dzq <¢fk+q¢,§> exp(iq - x) = Ix(x,t). (13)

The slow time and spatial dependence in I(x,t) corresponds to modulations with a “slow”
wave vector, q < k, kK = —k + q. Angle brackets in (13) stand for ensemble average,
which is equivalent to a time average with appropriate ergodic assumptions. The equation
for I (x,t) is derived from (12) by averaging it over fast scales and by taking the Fourier
transform over the slow variable x.

As an example, we consider two different models for drift waves in a magnetized plasma:
the standard Hasegawa-Mima equation and a slab-like model for drift waves in a sheared
magnetic field. The latter is similar to the standard Hasegawa-Mima equation with a
modified plasma response to the slow modulations of the electrostatic potential. Such
slow modes correspond to kj — 0, so that the slow part of the potential does not follow
Boltzmann distribution. [Note that zonal flows?3 (m = n = 0) are such slow modes with
k= 0.] As a result, the convective term appears in the lowest order, contrary to the
case of the Hasegawa-Mima equation, where such term is due to the polarization drift. An
appropriate equation for the drift wave dynamics in presence of a mean flow (neglecting
the self-interaction) has the form*™3
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where Vo = cbxV¢/By is the mean flow velocity. This equation can be written in the
form (11) with wy, = k - V,./(1 + k%p?) and

C b- k1><k2
Bol+ (ki +ko)2p

Ly oy = (1 + k2ps) - (15)



From (12) we obtain a conservation law for the invariant Ny = I(1 + k%p?)?,
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A different expression for the action-like invariant is obtained for the standard Hasegawa-
Mima (H.M.) model with a mean flow
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The appropriate interaction coefficient is
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In this case, the transport equation for I takes the form of the conservation law for the
invariant Ny = I k?p2(1 + k?p2),2426:54
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Similarly, this procedure can be used to derive the action-like invariant for the two-
dimensional motion of an incompressible fluid. In the latter case, there are no oscillating
modes so that the standard definition of the action as a ratio of the wave energy to wave
frequency is not applicable. The 2-D Euler equation has a form

OV3d+Vo-VV2e=0, (20)
where Vj is the velocity due to the mean flow. In this case, the wave kinetic equation is
0 0 ON, 0 0

where the wave-action Ny, = k*I;,.5¢

Note that both invariants for drift waves, (16) and (19), are different from the standard
definition of the wave action defined as the ratio of the wave energy to the wave frequency
is
(L+p5k1)* o 2 _ B
— %l = —
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(22)
where w, = kgV,. The difference between two forms of the action-like invariant is due to a
different form of the coupling matrix, Eq. (15) and Eq.(18), describing the interaction of
the small and large scale components.) New invariants, can be used to construct canonical
variables in the presence of the shear flow.??

4 Instability of the large scale shear flow

Coupled equations (5,16) can be solved to show that the modulations of the wave
packets and zonal flow V are unstable.?> We consider equations (5),(16) linearized for

small perturbations (Nj,@) ~ exp(—iQT + iqr),where ¢ = ¢, = —id/dr is the radial wave
vector of the large scale perturbation. Then, Eq. (5) takes the form

i = — /krk;g 65| d2k. (23)
By



The modulation of N, is calculated from (16)
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For the case of the narrow resonant function approximated by a delta-function, the growth
rate of the resonant instability is

2 0
2p2 ON
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The condition NP /Ok, < 0 is required for instability. This instability may be interpreted
as a result of the resonant interaction of the wave packet with slow modulations of the mean
flow. Note also that this instability has a character of the negative viscosity instability also
investigated for the driven 2D hydrodynamic turbulence.%:%6

Equation (25) also describes an another typeype of the instability that is not of the
resonant type, but rather of the hydrodynamic variety. When the growth rate of the insta-
bility becomes large compared to the characteristic frequency spread for the background
fluctuations, individual /i components contribute to the instability coherently. Insight into
this mechanism can be provided by a simple case of a monochromatic wave packet with
NP = Noé(k — ko), with kg = (ky0, kgo). Then we obtain®7
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Note the criterion for the instability:
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Calculating the derivative of the group velocity we obtain
, | koops| N/
Q= qVy —ilq] e 2L = k2002 + 12 2. (29)

This equation describes a growth of the large scale zonal flow as a result of the 1nstab1hty
Note that the instability is stabilized for shorter wave lengths, provided that 1 — 3kZ,p% +
k2p? < 0. Tt can readily be seen that the coherent (hydrodynamic) instability has a larger

growth rate Im Q) ~ Nol/2 compared to that of the resonant instability (26); for the latter
case Im Q) ~ Ny. Parametric instability of the hydrodynamic type was also considered by a
different approach in Refs. 31, 58, and 59.

We have considered a specific example of drift waves in plasmas, but, similar arguments
can be made for Rossby-type waves in fluids. For the systems of interest (magnetized plasma
and geostrophic fluids of rotating planets), the conservation of potential vorticity is an
essential characteristic of wave dynamics. In all cases, nonlinear advection of the potential
vorticity remains a source of large scale motion, though exact form for the potential vorticity
conservation for different types of waves in plasma and rotating fluids may vary. One of the



most general form for the vorticity conservation is Hasegawa-Mima or Charney-Obukhov
equation. In normalized form it can be written3*

0 (¥ = V30) + dpw — {w, Viv} =0. (30)

Here 1) is the stream-function for two-dimensional velocity in 6,7 - plane (S—plane), and
is as a sum of the mean flow and small scale fluctuations, @bz@—i—&. The system given by
Eq. (30) has an adiabatic invariant?»265152 Ny = k2 (14 k2 ) |¢|* and the wave frequency
wi = ko/(1+ k%) + kgVok? /(1 + k?). Then one obtains

= ¢ Hi’gavgr_
1+¢2 "2k O,
It is interesting to note that despite different definitions of the wave action and different

contribution of the mean flow to the eigen-frequency, the criterion for the instability (28)
remains the same.

(Q — qVg)?

(31)

Thus, the small scale wave packets in magnetized plasmas and geostrophic fluids are
unstable with respect to the long wavelength perturbations. These perturbations are ac-
companied by the excitation of the long wavelength modes of the velocity, i.e. zonal flows.
Two mechanisms of the instability constitute the “hydrodynamic” and “kinetic” regimes of
the same process, similar to the case of plasma - beam instabilities. Relative importance
of these two regimes will be determined by the relation between the nonlinear growth rate
vq (given either Egs. (26) or ( 29)) and the spectral width of the background turbulence,
dwy.. The instability is of the resonant type, when the instability growth rate v, is smaller
than the spectral width dwy of the small scale fluctuations. The instability becomes the
coherent hydrodynamic type if v, > dwg, so that all harmonics grow coherently. In the
simplest case of weak wave-wave interaction, the spectral width dwy is merely the width of
the wave packet of small scale fluctuations. The finite wave-wave interaction will further
broaden the spectrum and the nonlinear broadening Awjy must be taken into account in
the estimate for the spectrum width.

For the case of a monochromatic wave, Ny ~ §(k — kg), the shear flow instability given
by Eq.(29) does not exhibit an amplitude threshold. A more detailed analysis®! shows that
there is an amplitude threshold for the zonal flow excitation of the order of p?/L2.

The shear flow instability was examined here in the linear approximation with respect
to the amplitude of the large scale flow. The finite amplitude effects may lead to the wave
trapping inside the shear flow features and formation of strongly nonlinear structures.32:53:60

5 Role of pressure fluctuations in ion temperature gradient
driven turbulence

Finite pressure fluctuations modify the momentum balance with additional contribution
due to the gyro-viscosity tensor

or 8
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where the diamagnetic contribution to the Reynolds stress is given by

R =V,- [(b -V x V)vua}, (34)
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In general, pressures fluctuations have a finite phase shift with respect to the electrostatic
potential. Tt was shown®? that both parts (in-phase and out-of-phase) contribute to the
diamagnetic Reynolds stress tensor. The in-phase part provides a dominant contribution.
The contribution of the out-of-phase component, however is important to de-couple zonal
flow evolution from the slow evolution of ion pressure profile. It turns out that contribution
of the out-of-phase component in the Reynolds stress tensor is similar to the contribution
to the anomalous energy flux which cancel the slow pressure evolution from the vorticity
equation (the second term on the left hand side of Eq. (33). Thus, the only remaining
contribution of pressures fluctuations to the Reynolds stress tensor is due to the in-phase
component.

Basic dynamics of the toroidal ion temperature gradient driven mode is described by

following fluid equations®® :
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Here, wp = k- Vp, Vp = 2c¢I;b x VInB/eBy, w, = kocT;/eBoLy, wip = wi(1 + 1),
n; = 0InT;/01nn. We have also used Boltzmann electron density.

Equation (33) for the evolution of the mean flow can be written in a general two dimen-
sional form

— v2¢ = (1 + §) ViV jejn0ip0k, (38)

where e10 = —€91, €20 = €11 =0, 7 = (1, 2) = (r,0), and 6 is the parameter that describes
the diamagnetic enhancement of the Reynolds force due to temperature fluctuation. In
the lowest order in the k?p? parameter, § is independent of the wave vector and can be
written??

2 wii(L+m;) —bwp(l —771)/3
T  ws +wp(l0771/3 - 1)

Substituting (39) into (38) one finds the growth rate v = ¢2(1 + §)D,.. for the zonal flow
instability, where

6=

(39)
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In the opposite limit, gy > ¢, — 0, equation (38) describes generation of streamers with
the increment v = ¢2(1 + §) Dy,

Dy = —< ) /R Q-q-V )kagai 042k (41)

The radially elongated and poloidally localized nonlinear structures were observed in nu-
merical simulations of the ion temperature gradient driven turbulence.%



6 Electromagnetic effects and the generation of large scale
magnetic structures

For plasmas with a finite pressure (finite [3), electromagnetic effects becomes important
due to coupling of the drift waves to the Alfven wave branch that described by the dispersion

equation (w — wse) ( Z/kHvA) +k2 p2 = 0.9 Fluctuating magnetic field tends to reduce

the zonal flow drive due to the contribution of Maxwell stress tensor to Eq. (9). The
electromagnetic effects on the zonal flow growth can be simply understood from the general
expression for the instability growth rate%*
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In the electrostatic case, this expression reduces to Eq. (26). The absence of the zonal
drive at the shear Alfven wave resonance can be seen in Eq. (42) due to vanishing radial
component of the Wave group velocity for pure Alfven waves. For the kinetic shear Alfven
waves with finite k2 p2, expression (42) gives

krk ON
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Clearly, the population inversion ON/9k, > 0 is required for the instability. Note also, that
contrary to the case of drift waves, the spectrum asymmetry is required for kinetic shear
Alfven waves because of the absence of the diamagnetic rotation.

Modulational instability of small scale electromagnetic fluctuations may also lead to the
generation of large scale magnetic structures in a turbulent magnetized plasma. The large
scale magnetic field is driven by the mean electromotive force term in Ohm’s law, v x B, a
process somewhat similar to the current drive by the externally launched Alfven wave. 65,06
A finite phase shift between v and B is required that can be provide by the dissipation
such as Landau damping. In general case the generation of the zonal flow and magnetic
field are coupled and exhibit complex dynamics.%*

As an example we consider a collisionless Alfven wave turbulence in the presence of
an ambient magnetlc field By = Boz. A spontaneous excitation of large scale magnetic
fields B = VA x %, where A = A(z), is a result of coupling of small scale turbulence and
the initial perturbatlon of the mean field. Large scale random magnetic field refracts wave
packets of the Alfven waves and, thus, modulates spectrum of the turbulence. Modulated
spectrum reacts back on the generated field via correlation between the perturbed small
scale components of electrostatic and magnetic potentials. The latter provides electromotive
force in the mean Ohm’s law. As a result, under some conditions, the initial zonal magnetic
field can be amplified. This instability can be classified as a fast dynamo process.

The parallel momentum balance for electrons (generalized Ohm’s law) is
07 N e e =< € — ~ 9%
8t (nVH) —+ VE V(TL‘/“) + EeE”n + EE”nO +V < U”f >=0. (44)
The electron response of the fast scale fis given by
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Neglecting inertia for slow motion we have

10A ~ 1
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The right hand side of this equation describes four different sources for the mean magnetic
field. The first and second terms are contributions to the mean field growth due to the
field line bending. The third term is the radial transport of the momentum, and the
last term is the helicity injection. We do not consider here the helicity term that require
certain asymmetry in the spectrum (helicity). The contribution of the first two terms is
conveniently calculated by using the relation

1] Me ~ w o~ w kicQ ~ W o~
_— = —w— — A= 1 A~ A. 4
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We assume 8 > me/m; and w < k,va, so that k% ¢ /w2, < 1. Then we have
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The structure of this term clearly shows that a finite phase shift (wave damping) is required

for this term to be finite. A phase shift between ¢ and A is conditioned by the Landau
resonance leading to wave damping and can be found from equation

s="10 4 (49)

w 27
and

1
w=kpa(l+ §kip§ — (50)

i
mkiﬂzs)-
Here s = w/ kjvre < 1; we also assumed k;ﬁ_pg < 1 to simplify the expressions. The third

term in (46) is small compared to the first two as kicQ/wge < 1. From equations (46),
(48),(49) and (50) we find

10A g O

In the case of Alfven turbulence, the wave packet are modulated by the refraction due to
modulations of the Alfven wave frequency éw = 6kjva, where

1 0A

The modulations of wave packet then are described by

@+ ON _ 9bwdNy _
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(53)

In (52) and (53) we consider the perturbations (A4, N) ~ exp(—iQ2t+igX). The generalized
action density Ny, here is given by Ny, = k2 p2(1 + k2 p2) le¢/T.|? Jwy. Combining the Eqs.
(52) and (53) we obtain the dispersion equation for the growth rate of the large scale
magnetic field

O =iq*“c; - Z ky_akg . (54)

We have assumed ¢V > Q for the large scale magnetic field.



7 Summary

We have considered mechanisms for the zonal flow generation in drift-wave turbulence.
It is shown that the shear flow may develop as a result of modulational type instabilities of
the saturated turbulence. The instability develops due to positive feedback of modulations
of small scale fluctuations that refracted in the shear flow. We examined this instability for
the basic drift wave fluctuations as well as for the ion temperature gradient driven modes
and electromagnetic drift Alfven waves. Similar instabilities may occur in isomorphic to
drift waves geophysical systems. It is shown that the generation of large scale magnetic
structures is also possible in drift Alfven wave turbulence. The spontaneous excitation
of the large scale magnetic field is mediated by the dissipation processes such as Landau
wave-particle interaction. In general case, the generation of the large scale magnetic field
and shear flows are coupled. The complex intermittent dynamics of flows and magnetic
structures may be important for the understanding of electron transport due to the small
scale electromagnetic turbulence, e.g. electron temperature gradient driven modes.57:68
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