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The eigenmode of a geodesic acoustic mode in the presence of a temperature gradient is discussed. Eigen-
modes are obtained and the characteristic wavelength scales as ρ2/3

i L1/3
T (ρi: ion gyroradius, LT: temperature

gradient scale length). The direction of propagation is discussed.
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Zonal flows have attracted attention owing to their es-
sential role in the turbulent transport of magnetically con-
fined plasmas [1]. The geodesic acoustic mode (GAM) is
a kind of zonal flow, which has finite real frequency ow-
ing to the geodesic curvature of a toroidal magnetic field
[2], and is driven by microscopic turbulence [3, 4]. Mea-
surements of GAMs have been recently reported [5–11].
It has been known that the GAMs have real frequency
ωG =

√
2cs/R in tokamaks (cs: ion sound velocity, R: ma-

jour radius). [The coefficient
√

2 depends on the model of
plasma dynamics [1], but this is not an issue addressed in
the present article.] In tokamaks and other toroidal plas-
mas, the plasma temperature changes in the radial direc-
tion, so that the dispersion relation ω = ωG, which is pro-
vided by the local theory, predicts different frequencies at
different radii. In contrast, fluctuations with a common
frequency are observed within a region which has a sub-
stantial width in radial direction [10, 11]. This indicates
that the GAM oscillation appears as an eigenmode. In this
article, we discuss the eigenmode of GAM oscillation in
the presence of a temperature gradient. Due to the finite
ion gyroradius, local oscillations on different magnetic sur-
faces interfere with one another so as to constitute a radial
eigenmode. The characteristic wavelength is found to scale
as ρ2/3

i L1/3
T (ρi: ion gyroradius, LT: temperature gradient

scale length) and propagates outward if the temperature de-
creases towards the edge.

The dispersion relation of GAMs, ω = ωG, is derived
by balancing the cross-field current J̃D,r (due to the mag-
netic field curvature) and the ion polarization current J̃p,r

under the imposition of an electrostatic perturbation that
has a form φ̃ exp(ikr − iωt) in the leading order [12–15].
In order to study the radial eigenmode with analytic trans-
parency, we take a simple collisionless limit with Te $ Ti
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and kρi % 1. In the limit of Te $ Ti, the relation
vth,i/R % ω holds for ω ∼ ωG, and J̃D,r is dominated
by the electron response (vth,i: ion thermal velocity) [14].
Therefore, J̃D,r is not significantly influenced by the fi-
nite gyroradius effect. In contrast, the ion polarization cur-
rent, which is in proportion to ω, is screened by the factor
1 − k2ρ2

i owing to the finite gyroradius effect. Thus, the
relation J̃p,r + J̃D,r = 0 provides

(1 − k2ρ2
i )ω2 = ω2

G, (1)

where the lowest order finite-gyroradius correction is in-
cluded (see [12–16] for a more detailed derivation). We
consider the case in which the temperature decreases in ra-
dius, and choose the radius r0 where ω2 = ω2

G(r0) holds.
Taking the radial gradient of temperature into account, we
write ω2

G(r) = ω2
G(r0)

[
1 − (r − r0)L−1

T

]
. The dispersion re-

lation (1) can be rewritten as an eigenmode equation

ρ2
i

d2

dr2 φ(r) +
r − r0

LT
φ(r) = 0, (2)

by the replacement k2ρ2
i → −ρ2

i d2/dr2. Equation (2) has a
characteristic scale length,

λ = ρ2/3
i L1/3

T , (3)

and is normalized as

d2

dx2 φ(x) + xφ(x) = 0, (4)

where x = (r − r0)λ−1. Equation (4) is readily solved by
employing the Airy function:

φ(x) = Ai(−x). (5)

The result seen in Eq. (5) shows that the eigenmode
peaks near the region x ( 0, propagates in the lower-
temperature region (x > 0), and is evanescent in the higher
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Fig. 1 GAMs radial eigenmode. Horizontal axis is normalized
as x = (r − r0)λ−1.

temperature region (x < 0). Figure 1 illustrates the radial
eigenfunction. The wave length is a few times λ. For this
solution (5), the finite gyroradius correction has the order
of magnitude k2ρ2

i ∼ ρ2/3
i L−2/3

T , and is much smaller than
unity if ρi % LT holds. The assumption kρi % 1 is veri-
fied a posteriori. We note that, in the limit of ρi → 0, an
eigenmode is localized to a magnetic surface.

In summary, the GAM oscillation was found to exist
in a form of radial eigenmode when the temperature is in-
homogeneous. This is consistent with the observation that
GAM oscillations are observed as radial eigenmodes [11].
The radial wavelength has a dependence of ρ2/3

i L1/3
T , show-

ing that GAMs are mesoscale fluctuations.
One can extend this analysis in a couple of ways. The

extension to a more general profile of temperature T (r) is
possible. When Te comes closer to Ti, the screening ow-
ing to the finite-gyroradius effect also appears in J̃D,r as
was explained in [12–15], so that the coefficient to k2ρ2

i
in Eq. (1) becomes smaller (i.e., the radial wavelength be-
comes shorter). As was pointed in [17], the finite ion gy-
roradius effect can lead to the collisionless ion damping
even in the limit of k||vth,i % ω, such collisionless damping

having recently been studied theoretically [15]. When a
small but finite damping rate is introduced, the eigenfunc-
tion shows an oscillation in the region of x < 0. Details of
these investigations are left for future research.
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