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The dynamics of the tearing mode and microscopic resistive drift wave turbulence are studied by performing
a nonlinear simulation based on a 4-field Reduced MHD model, placing an emphasis on the interaction between
microscopic and transport processes. The simulation results show the importance of turbulent fluctuations for
the onset of the tearing mode. The faster growth of microscopic fluctuations induces accelerated growth of the
tearing mode, which is much faster than the linear growth rate. A turbulence-driven magnetic island is formed.
This is based on the incoherent emission of the long wavelength mode by microscopic turbulence.
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1. Introduction
Magnetized plasmas are nonuniform and exist in a

state far from thermal equilibrium. Consequently, in such
plasmas various kinds of bifurcations could appear fol-
lowed by an abrupt change of the topological structure of
the magnetic field, examples being sawtooth oscillation
and neoclassical tearing modes (NTM). Much work has
been done for NTM [1,2], but its trigger conditions remain
unclear. Turbulence, as well as the neoclassical transport
effect, might play roles in driving NTM. The hierarchical
interaction between turbulence and MHD modes is an im-
portant issue in tokamak physics [3]. One key process is
the role of turbulence’s coherent effect on the global mode.
Examples of coherent interaction among different scale-
length dynamics include process of generating the zonal
flow and zonal field, which has been recently reviewed [4].
Another example is a possible enhancement of the resistiv-
ity owing to background turbulence, which may increase
the growth rate of resistive turbulence. The other key pro-
cess is an incoherent generation of large-scale perturbation
by microscopic fluctuations. For instance, the nonlinear in-
teraction of microscopic turbulence has been pointed out to
cause a stochastic onset of the neoclassical tearing mode in
the case of linearly stable plasmas. Such a theoretical anal-
ysis shows the need for direct simulations in the study of
this important subject.

In the present paper, we investigate the dynamics of
the tearing modes and resistive drift wave turbulence si-
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multaneously, based on a 4-field Reduced Magneto Hydro
Dynamics (RMHD) model. In the simulation study, em-
phasis is placed on the interactions between the tearing
mode, microscopic fluctuations, and transport processes.
The transition from the tearing mode to a quasi-mode is
found to be induced by drift wave turbulence, and the
growth rate is accelerated [5]. This generates a seed mag-
netic island for the tearing mode. An analytical study is
performed based on the weak turbulence theory. An expla-
nation of the accelerated growth rate is given, and the gen-
erated island is discussed. This turbulence-induced seed
island can play an important role for the trigger of the
linearly-stable NTM.

2. Model
In this paper, the nonlinear evolution of NTM in the

presence of drift wave turbulence is investigated using a
set of 4-field RMHD equations, where the fluctuating ion
parallel flow and neoclassical ion viscosity are taken into
account [1, 6]. In this system, the electric resistivity and
the neoclassical Bootstrap current destabilizes the pertur-
bations in the range of drift wave frequencies, as has been
shown in, e.g.,[7]. In the previous study, a linear analysis
of the tearing mode (TM) with neoclassical viscosity has
been performed using a 3-field model and has been com-
pared with the one using a 4-field model. It was found
that both the parallel compressibility and the neoclassical
ion viscosity in the 4-field model stabilize the TM, even
though ∆

′
> 0 in the banana regime [6]. Inclusion of an

c© 2007 The Japan Society of Plasma
Science and Nuclear Fusion Research

025-1



Plasma and Fusion Research: Regular Articles Volume 2, 025 (2007)

ion temperature evolution equation in the system, i.e., a 5-
field model, will allow the coupling between the NTM and
ITG mode turbulence.

The quantities {φ, A, v, p}, which are chosen as dynam-
ical variables, are the fluctuating electrostatic potential, the
vector potential parallel to the magnetic field, parallel ve-
locity, and electron density. The model equations are writ-
ten as

∂

∂t
∇2
⊥F + [F,∇2

⊥F] − αi∇⊥ · [p,∇⊥F]

= −∇//∇2
⊥A + µc

i∇4
⊥F − qs

εs
µnc

i

∂Upi

∂r

−qs

εs

me

mi
µnc

e

∂Upe

∂r
, (1)

∂

∂t
A = −∇//(φ − αe p) + ηc

//∇2
⊥A + α

me

mi
µnc

e Upe, (2)

dv
dt
= −∇//p + 4µc

i∇2v − µnc
i Upi − me

mi
µnc

e Upe, (3)

dp
dt
= −β̂∇//(v + α∇2

⊥A) + β̂ηc
⊥∇2
⊥p

−β̂αme

mi

qs

εs
µnc

e

∂Upe

∂r
, (4)

where F = φ + αi p is the generalized potential, Upi =

v+(qs/εs)∂F/∂r and Upe = v+α∇2⊥A+(qs/εs)∂/∂r(F−αp)
are the fluctuating neoclassical ion and electron flows, re-
spectively, d/dt = ∂/∂t + [φ, ], ∇// = ∂/∂z − [A, ] and [, ]
is the Poisson bracket. In this model, the ion and electron
temperatures are assumed to be constant. The coefficients
{µcl

i , η
cl
//
, ηcl⊥} are classical ion viscosity, parallel and per-

pendicular resistivity [8]. The normalization vAt/R → t,
r/a → r is adapted, where vA is the Alfven velocity, R
is the major radius, and a is the minor radius. Other pa-
rameters are defined by β̂ = β/(1 + β), α = c/(aωpi),
αi = α/(1 + τ), αe = τα/(1 + τ) with plasma beta β, the
speed of light c, ion plasma frequency ωpi, and the ratio of
electron to ion temperature τ = Te/Ti. The subscript ‘s’ in
the safety factor qs and the inverse aspect ratio εs indicate
the value evaluated at the resonance surface.

This model conserves the energy in the dissipationless
limit [9, 10]. The energy balance in the system is given by

dH
dt
= −

∫
dV

(
µc

i |∇2
⊥F |2 + ηc

//|∇2
⊥A|2 + 4µc

i |∇⊥v|2

+ηc
⊥|∇⊥p|2 + µnc

i |Upi|2 + me

mi
µnc

e |Upe|2
)

(5)

with

H =
1
2

∫
dV

(
|∇⊥F |2 + |∇⊥A|2 + |v|2 + |p|

2

β̂

)
. (6)

In Eq. (6), the first term in RHS represents the electrostatic
energy, the second term the electromagnetic energy, the

third term the ion kinetic energy parallel to the ambient
magnetic field, and the fourth term internal energy.

The model of neoclassical viscosity is key for the
study of the tearing mode. The neoclassical viscosities are
given by the interpolated formula [11] as

µnc
e =

2.3
√
ενe

(1 + 1.07ν1/2e∗ + 1.02νe∗ )(1 + 1.07ε3/2νe∗)
, (7)

µnc
i =

0.66
√
ενi

(1+1.03ν1/2i∗ +0.31νi∗ )(1+0.66ε3/2νi∗ )
, (8)

where νi,e∗ = νi,e/(ε3/2)(qR)/vthi,e. It should be noted that
this set of equations with toroidal curvature terms in the
vorticity equation and in the electron density equation was
used for analyzing the neoclassical ballooning mode in the
fluid limit [12]. Without neoclassical viscosity, these equa-
tions agree with those originally derived by Hazeltine et al.
[9]. Microscopic instabilities, which we refer to here sim-
ply as ‘resistive drift waves’, have sometimes been referred
to as ‘the neoclassical pressure-gradient-driven MHD tur-
bulence’ when the role of the neoclassical Bootstrap cur-
rent (µnc

e Upe term in Eq. (2)) is illuminated in the destabi-
lization mechanisms [7].

For simplicity, we keep only the convective nonlinear-
ity and neglect the gyro-viscous nonlinearity in Eq. (1):

[F,∇2
⊥F] − αi∇ · [p,∇⊥F]

= [φ,∇2
⊥F] − αi

r
p
′′′
0
∂φ

∂θ

+αi

p
′
0

r


′
1
r
∂F
∂θ
− αi

r
p
′′
0
∂2F
∂r∂θ

+gyro-vis. non. (9)

It is found that this nonlinearity leads to a strong normal
cascade of energy. This influence is important for the level
of turbulence saturation [10], but it weakly affects the satu-
ration of the magnetic island. The details of this effect will
be reported elsewhere.

3. Parameters and Linear Stability
The model q profile and pressure profile

q(r) = q1(1 + (r/rs)a)b + q2,

q1 = (qs − q0)/(2b − 1), (10)

q2 = q0 − q1

and p(r) = (β/ε)(1 − r2)2 are introduced. Parameters are
chosen as qs = 2, a = 3, b = 1, ε = 1/3, β = 0.01,
α = 0.01, and τ = 1. For nonlinear simulation, we use
ηc
// = 10−5. This large resistivity number is due to the

limitation of computation, but casts an issue for the exci-
tation of microscopic modes. If we use formulas (7) and
(8) (the HS model), the neoclassical viscosity corresponds
to the one in the Pfirsh-Schluter regime for ηc

//
= 10−5. To

avoid this situation, we use the model with enhanced neo-
classical viscosity (the B model) given by µnc

e = 2.3
√
ενe,

µnc
i = 0.66

√
ενi instead of Eqs. (7) and (8). These models

are briefly explained in Fig. 1 in Ref. [5].
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Fig. 1 Linear growth rate versus toroidal mode number n in HS
and B models.

Figure 1 shows the dependence of the linear growth
rate on the toroidal mode number n for the HS model and
the B model with q0 = 1.01 and rs = 0.56. For the
HS model, only the (2,1) mode is unstable (classical TM),
while on the other hand, for the B model, the linear growth
rate increases with increases in the mode number. In this
regime, the result shown in Fig. 1 satisfies the relation

γ ∝ R−1/3
M n0.6, (11)

for which the result of an analytic theory [7]

γ ∝ R−1/3
M n2/3 (12)

is considered to be relevant (RM: the Magnetic Reynolds
number). Note that additional mechanisms (e.g., the neo-
classical effect in Eq. (1)) also work in the present model.
For modes with large mode numbers (n > 30), the growth
rate decreases owing to the collisional diffusion effect (see
Fig. 2 in Ref. [5]). The details of linear mode stability will
be reported elsewhere [13].

We also investigate the dependence of the q profile
on the growth rate. In this study, we could not find the
window where ∆

′
2,1 is negative while there exists unsta-

ble collisional drift wave in high-n regime, which is suit-
able for the demonstration of the nonlinear excitation of
NTM by turbulence. In this paper, we discuss the case with
q0 = 1.2 and rs = 0.6 with ∆

′
2,1 ≡ (A

′
2,1(rs + 0) − A

′
2,1(rs −

0))/A2,1(rs) = 10.25. Under this circumstance, there is no
subcritical excitation of NTM, but the defect of bootstrap
current on the island can destabilize the mode. In addition,
multi-scale interaction between the TM mode and turbu-
lence are explicitly demonstrated in nonlinear simulations.

Fig. 2 Time evolution of electromagnetic energy of the (2,1)
mode for cases with various Fourier modes.

4. Nonlinear Simulation
4.1 Acceleration of the growth of the tearing

mode
The nonlinear simulation with single helicity modes

is performed using a spectral code. The boundary condi-
tion is given by fm,n(0) = fm,n(1) = 0 and f

′
0,0(0) = 0,

f0,0(1) = 0. Figure 2 shows the time evolution of the elec-
tromagnetic energy of the (2,1) mode for cases with dif-
ferent Fourier modes in the spectral space. Here, the ‘2-
modes’ indicates (2,1), (4,2), these complex conjugate and
(0,0) modes. Similarly, the ‘8-modes’ means (2,1), (4,2),
. . . , (16,8), these complex conjugate and (0,0) modes. The
2-modes case indicates the dynamics of the tearing mode,
i.e., the (2,1) mode in the presence of the back-interaction
of the quasilinear profile modification. The well-known
linear growth of the tearing mode and saturation are ob-
tained. If the evolution of the microscopic fluctuations is
simultaneously solved, it is newly found that nonlinear ac-
celeration occurs in the early growing phase. However,
saturation amplitude is weakly affected by high-n modes.

4.2 Time evolution of TM in the growing
phase

The aim of this study is to investigate what nonlinear
mechanisms cause the sudden acceleration of the growth
rate of the TM. First examined is the role of the quasilin-
ear background profile modification. We next investigate
the influence of the zonal field. Following this, the effect
of nonlinear incoherent emission from microfluctuations is
investigated.

The role of background profile modification is stud-
ied. A reference calculation was performed, in which the
quasilinear effect is turned off. (In other words, nonlinear
terms for the evolution of the (0,0) mode are set to be zero.)
The case with the QL effect and that without are compared.
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Fig. 3 Lissajous curve showing the relation between microscopic fluctuations and macroscopic perturbations (a). Relation between the
(2,1) mode energy and that of the (0.0) mode (b).

It was concluded that the accelerated growth of the tearing
mode occurs in both simulations. That is, the accelerated
growth of the tearing mode in the presence of microfluctu-
ations is not induced by the QL effect. (Of cause, the QL
effect is quite important for saturation phase.)

In order to study the magnitude of the drive from mi-
croturbulence to the global perturbations, a Lissajous curve
is shown in Fig. 3 (a), corresponding to the case with 8-
modes shown in Fig. 2. Figure 3 (a) draws (E16, E2) and
(E16, E0), where E16 is the energy of the (m, n) = (16, 8)
mode, E2 is that of the (2, 1) mode, and E0 is the one for
the (0, 0) component, respectively. This figure shows that
there are four phases. That is, in the first phase, the high-
mode number energy E16 increases much faster than the
growth of E2. In the next phase, a quadratic dependence of
E2 with respect to E16 holds, i.e., a relation

E2 ∝ E2
16 (13a)

is found. In the first (I) and second phase (II), a quadratic
relation E0 ∝ E2

16 holds. In the third phase (III), E16 de-
creases but E2 continues to rise. In the last phase (IV), both
E2 and E0 increase. It is also shown in figure 3 (b) that

E0 	 E2 (13b)

holds in the phase (II), but E0 ∝ E2
2 is satisfied in the phase

(IV). This means that, in the last phase (IV), the change
of the energy of the (0, 0) component is induced by the
quasilinear effect of the (2, 1) tearing mode.

The relation (13a) shows the essential feature of the
accelerated growth of the tearing mode. In phases (I)
and (II), the microscopic fluctuations show the exponen-
tial growth, which is symbolically written as

Ihigh m ∝ exp (γht). (14)

The relation by Eq. (13a) indicates that the accelerated

growth of the tearing mode can be described by the relation

I2/1 ∝ exp (2γht), (15)

as can the (0, 0) component, I0/0 ∝ exp (2γht).
In the phase of accelerated growth of the (2,1) mode,

this mode behaves as a quasi-mode which is driven by
the beating of microscopic perturbations. Figure 4 shows
the time evolution of mode frequency in the acceleration
phase. In the first phase, t < 700, the modes obey the
linear response. The deviation of the evolution of the (2,1)
mode from linear growth is noticeable for 800 < t based on
the evolution of the electromagnetic energy. The deviation
of the real frequency from the linear phase occurs earlier,
700 < t, and the (2,1) mode starts to rotate in the direc-
tion of the diamagnetic drift. When the transition from the
linear phase to the nonlinearly-accelerated phase is com-
pleted, 950 < t, the real frequency tends to satisfy the fre-
quency’s matching condition. The frequency of the (2,1)
mode in 1040 ≤ t ≤ 1200 is found to satisfy

ω2 ∼ ω16 − ω14, (16)

where ω2, ω14, ω16 are the angular frequencies of the (2,1)
mode, the (14,7) mode, and the (16,8) mode, respectively.
(It is noted that the high-m drift waves have a weak dis-
persion so that the matching relation ω2 ∼ ωm+2 − ωm

holds for other values of m for drift wave components.)
This matching condition continues to be satisfied, approx-
imately, after the acceleration of the growth is terminated,
1200 ≤ t ≤ 1400. The frequency matching and the
matching of the mode numbers suggest that the acceler-
ated growth of the tearing mode is due to the incoherent
emission from short wave length turbulence.

The radial wave structure changes from the tearing
mode to the localized mode in the phase of accelerated
growth due to the turbulent noise. When the microscopic

025-4



Plasma and Fusion Research: Regular Articles Volume 2, 025 (2007)

Fig. 4 Time evolution of mode frequency: the (2,1) made (blue),
the (16,8) mode (light blue), and the (14,7) mode (purple)
are shown. The beat frequency ω16/8 − ω14/7 is shown by
the dotted line (red).

fluctuations reach the stationary turbulent state, the (2,1)
mode changes from the localized mode to the nonlinear
TM. The driven perturbation of the (2,1) mode provides a
seed island. We note that the amplitude of the (2,1) mode
energy is approximately 10−5 ∼ 10−4 of those at saturation
when the enhanced growth ends. This means that the is-
land width, which is induced by the nonlinear interaction
with the microscopic turbulence, can reach a few percent
of the saturation level when the accelerated growth ends.
This nonlinear acceleration process is effective in generat-
ing a seed island.

Before closing this section, we discuss the nonlinear
effects of drift wave fluctuations on the (2,1) mode. Using
the partially linearized model, the effects of each nonlinear
term are investigated (see Fig. 6 in Ref. [5]). A compari-
son leads us to the following finding. (i) The acceleration
of the growth rate is due to the pump by the high (m, n)
modes via nonlinear terms. (ii) The nonlinear terms in any
of Eqs. (1) - (4) are sufficient to cause acceleration of the
growth rate. (iii) Nonlinearities in the fluctuating density
and Ohm’s law contribute the strongest to this accelera-
tion. (iv) The termination of this acceleration is due to the
termination of the growth of the microscopic fluctuations.
When the nonlinear terms in Ohm’s law and the vortic-
ity equation are neglected, microfluctuations do not reach
stationary turbulence in this simulation. This leads to the
continued amplification of the (2,1) mode.

5. Theoretical Analysis
5.1 Weak turbulence formalism

The accelerated growth in the simulation and the sus-
tainment of the turbulence-driven island are studied in the

framework of the weak turbulence theory (WTT).
The set of model Eqs. (1) - (4) is formally written as

∂

∂t
X + LX = N, (17)

where X = (F, A, V, P), L is the linear operator that de-
termines the linear stability, and N stands for the nonlinear
interaction terms. Here, we are interested in the drive of the
long-wavelength mode by the beat of microscopic modes.
For instance, Xk′ and Xk′′ are chosen as microscopic fluc-
tuations, which have frequenciesωk′ andωk′′ , respectively.
The response of the perturbation with

k = k′ − k′′ (18)

is considered. (The wave vector k refers to the global
mode, and k′ and k′′denote microscopic modes.) In this
case, the right hand side of Eq. (17) has the frequency

ωb = ωk′ − ωk′′ . (19)

The operator L includes radial derivatives. Formally, L can
be expanded in a series of radial eigenfunctions. Instead,
theoretical evaluation is performed by simply taking the
least stable mode near the frequency ωb at k = k′ − k′′.
Thus the operator L is replaced by the matrix Lk, which
is composed of numerical coefficients. The matrix Lk is
diagonalized by use of a unitary matrix as

ULkU−1 = Dk, (20)

where the diagonal matrix is chosen such that the (1,1) ele-
ment has the smallest real part (i.e., the least stable mode),
and (2, 2) - (4, 4) elements correspond to more stable
modes. The response field Xk and the source nonlinear
term Nk are also transformed as

Yk = UXk and Mk = UNk. (21)

Here, for the purpose of analytical insight, we employ
two simplifications. First, we study the coupling through
the incoherent terms on the right-hand side. The coherent
part (which may contribute to the turbulent viscosity and
resistivity, etc.) is not considered. If the effects of the co-
herent interaction are studied, they can be renormalized in
the operator Lk. Second, we analyze the evolution of the
least-stable response Y1,k. More strongly damped compo-
nents, Yn,k (n = 2, 3, 4), are neglected. (Components with
larger damping rates (n = 2, 3, 4) can be solved in a simi-
lar way, but their contribution to quantity Xk is small due to
their larger damping rate.) Following the standard proce-
dure prescribed by the weak turbulence theory [14], which
is illustrated in the Appendix, the evolution equation of the
perturbation intensity is obtained as

∂

∂t
Ik + ReD11,k Ik = π

∣∣∣M1, k

∣∣∣2 , (22)

where Ik =

∫ ∣∣∣Y1,k

∣∣∣2 dω.
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The nonlinear driving term M1, k =

4∑
j=1

U1 jN j has ab-

solute value∣∣∣M1, k

∣∣∣2 = 3∑
j, j′

U1 jU
∗
1 j′NjN

∗
j′ . (23)

As has been demonstrated by the direct nonlinear simula-
tion [5], the nonlinear interaction in one equation is suf-
ficient to induce the accelerated growth in simulations.
Thus, we take the most effective nonlinear term N4, and
have a simplified expression as∣∣∣M1, k

∣∣∣2 = ∣∣∣U14,k

∣∣∣2 ∣∣∣N4,k

∣∣∣2 . (24)

The nonlinear term N4 has a structure such as

N4,k =
∑

k′
Vk−k′,k′X j,k−k′X j′,k′ . (25)

Here, in expression of X j,k′ , the suffix j indicates the field
variable (F, A, V, P). The suffix k′ denotes the wavevec-
tor of the microscopic fluctuations. Analytic expression of
|M1, k | (in the limit of |k′| � |k|) is derived in the Appendix
in the case that X j,k′ and X j′ ,k′ are in phase (which is of
present interest) as∣∣∣M1, k

∣∣∣2 	 2
∣∣∣U14,k

∣∣∣2 ∑
k′ω′

∣∣∣Vk′,k′
∣∣∣2 ∣∣∣X j′,k′

∣∣∣2 ∣∣∣X j,k′
∣∣∣2 . (26)

5.2 Excitation of the global mode
The set of Eqs. (22) and (26) are solved to study the

evolution of the global mode in the presence of incoher-
ent emissions from microscopic fluctuations. The long-
wavelength mode is driven by the source term (RHS) of
Eq. (22). The intensity of the test mode (the (2, 1) in the
case of simulations, denoted by k) is given by a superimpo-
sition of the linear mode and the response to the excitation
by the turbulence (denoted by k′) as

Ik = Ik(0) exp (γkt)

+ exp (γkt)
∫ t

0
dt′ exp (−γkt′)π

∣∣∣M1, k

∣∣∣2 , (27)

where γk = −ReD11,k.
In the initial value problem of nonlinear simulations,

which is discussed in section 4, the amplitude of micro-

scopic fluctuations,
∣∣∣X j,k′

∣∣∣2 and
∣∣∣X j′,k′

∣∣∣2, grows in time ex-
ponentially as∣∣∣X j,k′

∣∣∣2 ∝ exp (γht),

where γh stands for the growth rate of the amplitude of
microscopic perturbations. Thus, the source term grows
with the twice growth rate as∣∣∣M1, k

∣∣∣2 ∝ exp (2γht). (28)

For the case of drift wave turbulence and the tearing mode,
the relation γh > γk holds. Equation (27) yields the evolu-
tion of the intensity of the macroscopic tearing mode as

Ik = Ik(0) exp (γkt)

+
π

2γh − γk

∣∣∣M1, k(0)
∣∣∣2 exp (2γht). (29)

This result shows the nonlinear growth of the tearing mode.
That is, Ik has two components. The first term includes the
mode’s linear growth rate. The second term corresponds
to the contribution of the microscopic fluctuations. The
second term has a larger growth rate than does the first
term, in the system of drift waves and tearing mode. If the
second term in the RHS of Eq. (29) is small, owing to the
small initial values of microfluctuations, the first term in
the RHS of Eq. (29) is larger than the second term, show-
ing the linear growth of Ik. However, the second term has
larger growth rate, and it overcomes the first term. Under
this circumstance, Ik has the dependence as

Ik ∝ exp (2γht). (30)

That is, the nonlinear growth rate of the driven tearing
mode is given by twice the growth rate of rapidly growing
turbulence. Therefore, when nonlinear growth dominates
linear growth for Ik, the relation holds between the inten-
sity of background turbulence Ik′ as

Ik ∝ I2
k′ . (31)

These evolutions expressed by Eqs. (30) and (31) are ob-
served in nonlinear simulation, as is illustrated in Figs. 2
and 3.

5.3 Seed island in stationary turbulence
When the background turbulence is in a stationary

state, the driving term (RHS of Eq. (22)) remains constant
in time. The stationary island can be sustained, for the case
of the stable tearing mode, as

Ik =
−π
γk

∣∣∣M1, k

∣∣∣2 . (32)

Note that the sign of γk is negative if the beat mode is sta-
ble. Here, we apply the theory of neoclassical-pressure-
gradient mode turbulence [7] to the analysis using the sys-
tem of Eqs. (1) - (4). (Theoretical expression of the turbu-
lent excitation of the tearing mode has also been discussed
and the order of magnitude estimate has been given for
the case in which the microscopic turbulence is current-
diffusive ballooning mode turbulence [15, 16].)

The unitary transformation has the magnitude of the
order of unity for perturbations of the present case, where
| p̃| is the largest but other field components have similar
relative amplitude. The Lagrange nonlinearity is the key
nonlinear process in the theoretical modeling. This ansatz
is also confirmed by direct simulation in which one nonlin-
earity in the set of equations can reproduce the nonlinear
acceleration of the tearing mode. The Lagrange nonlinear-
ity for the microscopic perturbations is evaluated based on
the decorrelation rate caused by background fluctuations,

and the intensity of the source
∣∣∣M1, k

∣∣∣2 is evaluated from
Eq. (26) as

∣∣∣M1, k

∣∣∣2 ∼∑
k′ω′

k2

k′2
Γ2

k′X
2
k′ ∼

k2

k′2
Γk′

∑
k′

Ik′ , (33)
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where Γk′ is the nonlinear decorrelation rate of the micro-
scopic perturbation (k′) by other microscopic fluctuations

(k′′), which is defined as Γk′Xk′ =

〈∑
k′′ω′′

Vk′k′′ Xk′′Xk′

〉
, and

Ik′ is the intensity of the microfluctuations. An order of
magnitude estimate, Ik′ =

∑
ω′

X2
k′ ∼ Γk′X

2
k′ , is employed

in relating the Fourier component Xk′ and the fluctuation
intensity Ik′ .

The seed island in stationary turbulence is studied
based on Eqs. (32) and (33). The analytic theory of the
neoclassical pressure gradient-driven turbulence [7] can be
applied to the study of the seed island of the tearing mode.
Rewriting the decorrelation rate by use of the turbulent
diffusion coefficient (eddy viscosity), Γk′ = Dturbk′2, the
source term is simplified as∣∣∣M1, k

∣∣∣2 ∼ k2Dturb

∑
k′

Ik′ . (34)

By combining Eqs. (32) and (34), one obtains the level of
the stationary seed island for the case of the stable tearing
mode (γk < 0) as

Ik =
−π
γk

k2 Dturb

∑
k′

Ik′ . (35)

The formula of Eq. (35) describes the enhanced seed island
when the parameters approach the marginal stability con-
dition, γk → 0. In terms of the field variable, the seed
magnetic perturbation for the tearing mode is written as

∣∣∣B̃k

∣∣∣ 	
√

k2 Dturb

|γk |
∣∣∣B̃micro

∣∣∣ , (36)

where B̃micro is the amplitude of microscopic magnetic
fluctuations.

As is explained in previous sections, the turbulence
analyzed in [7] is not completely identical to that in the
present nonlinear simulation. Nevertheless, an essential el-
ement for the development of microscopic turbulence (i.e.,
destabilization by the neoclassical Bootstrap current and
saturation by the nonlinear transport) was illustrated in [7].
Thus, it is relevant to apply the result of [7] for the present
problem in order to achieve an analytic understanding of
the problem. The formulae of the turbulent transport coef-
ficient and fluctuation level were given in [7] as

Dturb ≈ εqβp
η

µ0

Ls

Lp
ζ, (37)

apart from a numerical coefficient of the order of unity,
where Ls is the magnetic shear length, Lp is the pressure
gradient scale length, and ζ = µnc

e (µnc
e + 0.51νe)−1 is a co-

efficient of the order of unity. Fluctuation amplitude was
given as∣∣∣B̃micro

∣∣∣
B

∼
(
ε

q
βp

)7/6

ζ 4/3

 r2L3
s〈

k′2θ
〉

L7
p


1/6

R−1/3
M . (38)

By combining Eqs. (36), (37), and (38), the level of tear-
ing mode amplitude, which is driven by background turbu-
lence, is estimated as∣∣∣B̃k

∣∣∣
B
∼

√
k2η

|γk|µ0

(
εs

qs
βp

)5/3

ζ 11/6

 rL3
s

k′θL
5
p

1/6

R−1/3
M . (39)

The seed island is shown to be excited by the pressure
gradient, through nonlinear interaction with microscopic
turbulence. The width of the seed island depends on |γk |
as wseed ∝ |γk |−1/4, and has considerable magnitude away
from the critical condition for instability.

5.4 Impact on the transition to the Ruther-
ford regime

In the evolution of the tearing mode instability, the
transition from the linear regime to the Rutherford regime
[17], where the island width grows not exponentially but
linearly in time, is essential.

The threshold amplitude, above which the exponen-
tial growth turns to the algebraic growth, was derived by
comparing the inertia response to the nonlinear force. The
critical amplitude has been derived as

B̃r

rsB′θ

∣∣∣∣∣∣
th

	
√

2η// ργ

rsBθ
, (40)

where ρ is the mass density and γ is the growth rate of the
tearing perturbation [17]. In the absence of coupling with
the drift wave turbulence, γ is given by the linear growth
rate. In this case, threshold amplitude B̃r

∣∣∣
th

(rsB′θ)
−1 is of

the order of R−4/5
M . (The dependence on ∆′ introduces a co-

efficient of the order of unity, but is suppressed here for the
sake of simplicity.) Thus, within the limit of high temper-
ature, rapid growth of the tearing mode stops at low am-
plitude, then slow increment follows with the time scale
of the resistive diffusion time. Excitation by the nonlin-
ear coupling influences this threshold strongly. In the case
in which the incoherent emission by drift waves controls
the growth of the tearing mode, γ in Eq. (39) is evaluated
by (twice) the growth rate of the drift waves. The thresh-
old amplitude to enter the Rutherford regime B̃r

∣∣∣
th

(rsB′θ)
−1

is then given as
√
τAγR−1

M . With the help of the estimate

Eq. (11), γ ∝ R−1/3
M , the relation for the threshold amplitude

is obtained as

B̃r

rsB′θ

∣∣∣∣∣∣
th

∝ R−2/3
M , (41)

showing a weaker dependence on the magnetic Reynolds
number. The transition to the Rutherford regime occurs at
much higher amplitude (in high temperature plasmas) ow-
ing to the nonlinear coupling with drift wave fluctuations.

6. Summary and Discussion
In this article, we studied the nonlinear mechanism

which induces accelerated growth of the tearing mode
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when microscopic fluctuations are simultaneously evolv-
ing. It was found that the drive mechanism is the inco-
herent emission from microscopic fluctuations. The beat
mode was found to be driven by this mechanism so as to
produce a seed island for the tearing mode. Any nonlinear-
ity in the dynamical equations of the vorticity, Ohm’s law,
the parallel flow of ions, and ion energy was found to in-
duce the nonlinear acceleration of the growth of the tearing
mode in the direct simulation. Thus, clear evidence for the
important interaction between the global plasma dynamics
and microscopic turbulence was demonstrated. The size
of the seed island, induced by the microscopic turbulence,
reached the range of a few percent in comparison with the
width of the saturated island in the simulation. It is em-
phasized that the incoherent emission by the microscopic
fluctuations makes an important contribution to seeding the
magnetic island for the tearing mode evolution. This anal-
ysis has provided a basis for direct simulation to verify
the hypothesis that incoherent nonlinear interaction works
as the kick for exciting the tearing mode. The influence
on the threshold amplitude necessary to enter the Ruther-
ford regime was also studied. It was found that, due to
the accelerated growth, the threshold amplitude necessary
to enter the Rutherford regime becomes higher. This be-
comes prominent if the plasma temperature increases and
the magnetic Reynolds number increases.

It should be noticed that in this paper we have ana-
lyzed the role of incoherent interaction, because of the rele-
vance of such cases as demonstrated by direct simulations.
More general consideration will be necessary in order to
completely identify the role of microscopic fluctuations on
the evolution of the tearing mode. Following the WTT for-
malism, Eq. (17) is deduced into the form

∂

∂t
Ik + LkIk =

∑
k′

Akk′ Ik′ Ik +
∑

k′
Bkk′ Ik′ Ik−k′ , (42)

where the
∑

k′
Akk′ Ik′ Ik term is not retained in the analysis

of this article. The first term on the right hand indicates the
term that shows a coherent interaction on the test mode.
This effect appears as a possible influence of the anoma-
lous resistivity, turbulent thermal conductivity, and turbu-
lent viscosity. The effective turbulent resistivity and vis-
cosity can change sign such as in the cases of zonal field
and zonal flow [4]. In the present problem, i.e., the exci-
tation of the tearing mode by background turbulence, the
second term, the incoherent interaction, plays the dominant
role. The case where the first term in the RHS of Eq. (42) is
important has been discussed in, e.g.,[18]. These findings
illustrate the important roles of microscopic turbulence on
the evolution of global perturbations, the integrated analy-
ses of which require future intensive studies.
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Appendix. Weak Turbulence Formal-
ism and Nonlinear Source Term

The set of model equations (17)

∂

∂t
X + LX = N

is rewritten after the diagonalization as

−iωbYk + DkYk = Mk. (A1)

Keeping the least-stable response Y1, k, we solve the equa-
tion for Y1, k:

−iωbY1, k + D11, kY1, k = M1, k. (A2)

The response is given as

∣∣∣Y1, k

∣∣∣2=
∣∣∣M1, k

∣∣∣2(
Im D11, k−Reωb

)2
+
(
Re D11, k+γb

)2
, (A3)

where γb = Imωb. According to a standard procedure of
the weak turbulence theory [14], the relation(

(ω − ωk)2 + γ2
k

)−1
= π|γk|−1δ(ω − ωk)

is employed, and Eq. (A3) yields the result

∂

∂t
Ik + Re D11, kIk = π|M1, k |2, (A4)

where Ik =

∫ ∣∣∣Y1, k

∣∣∣2 dω.

Interpretation of the field variable Xk from the am-
plitude Y1, k is straightforward. Here, we take an ap-
proximation that the more strongly damped eigenmodes
Yn, k (n = 2, 3, 4) are neglected in comparison with the
least stable component, Y1, k. Thus, one has Xk = U−1yk,
where yk = (Y1, k, 0, 0, 0)T. Therefore, once the amplitude
Y1, k is obtained, the partition among Xm, k (m = 1, 2, 3, 4)
is given immediately.

Next, the nonlinear driving term M1, k =

4∑
j=1

U1 jN j is

evaluated for a simplified expression of Eq. (24)∣∣∣M1, k

∣∣∣2 = ∣∣∣U14, k

∣∣∣2 ∣∣∣N4, k

∣∣∣2 .
For the case where N4 is taken into account, the combina-
tion X1, k−k′X4, k′ appears, and Eq. (25) gives

∣∣∣N4, k

∣∣∣2 = 〈 ∑
k′ω′k′′ω′′

Vk−k′, k′V
∗
k−k′′ , k′′

× X j, k−k′X j′, k′X
∗
j, k−k′′X

∗
j′, k′′

〉
. (A5)
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By employing a random phase approximation (RPA), the
right hand side remains for the combination of k′ = k′′ or
k′ = k′′ − k.∣∣∣N4, k

∣∣∣2 = 〈∑
k′ω′

∣∣∣Vk−k′, k′
∣∣∣2 ∣∣∣X j′, k′

∣∣∣2 ∣∣∣X j, k−k′
∣∣∣2〉

+
∑
k′ω′

Vk−k′, k′V
∗
−k′, k−k′

〈
X j, k−k′X

∗
j′, k−k′

〉 〈
X j′ , k′X

∗
j, k′

〉
. (A6)

In the case that |k′| � |k|, the right hand side is evaluated
by the leading term of k → 0, i.e.,∣∣∣N4, k

∣∣∣2 	∑
k′ω′

∣∣∣Vk′ , k′
∣∣∣2 ∣∣∣X j′, k′

∣∣∣2 ∣∣∣X j, k′
∣∣∣2

+
∑
k′ω′

Vk′, k′V
∗
−k′,−k′

〈
X j, k′X

∗
j′, k′

〉 〈
X j′ , k′X

∗
j, k′

〉
. (A7)

If one employs the case that X j, k′ and X j′, k′ are in phase
(such as the density and potential perturbation in drift wave
fluctuations), one has a simplified expression as∣∣∣N4, k

∣∣∣2 	 2
∑
k′ω′

∣∣∣Vk′, k′
∣∣∣2 ∣∣∣X j′ , k′

∣∣∣2 ∣∣∣X j, k′
∣∣∣2 . (A8)

This provides the formula∣∣∣M1, k

∣∣∣2 	 2
∣∣∣U14, k

∣∣∣2 ∑
k′ω′

∣∣∣Vk′, k′
∣∣∣2 ∣∣∣X j′, k′

∣∣∣2 ∣∣∣X j, k′
∣∣∣2 (A9)
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