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• Not a professional ELM-ologist

• Perspective is theoretical, and focus is on issues in 

understanding dynamics

• Perspective is that of a transport theorist

• Aim is to distill elements critical to model building

• Unresolved issues are discussed

Caveat Emptor



5

Outline

• ELMs

– Conventional wisdom: A Quick Look

– Some physics questions

• Recent Progress:

– cross phase coherence and the origin of bursts

– phase coherence as leverage for ELM mitigation

– a deeper – but incomplete – look at phase dynamics

• Conclusions and Discussion
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• ELMs are ~ quasi-periodic relaxation events occurring at edge 

pedestal in H-mode plasma

• ELMs
– Limit edge pedestal   –

– Expel impurities         +

– Damage PFC             –

• ELMs à a serious concern for ITER

– ΔW 	~	20%	W 	~	20	MJ
–  	/	~	10 × limit for damage

–  	~	200	

Terra Firma: Conventional Wisdom of ELMs
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Terra Firma: Conventional Wisdom of ELMs

• ELM Types
– I, II:  ↑ as  ↑, greatest concern, related to 

ideal stability

– III:  ↓ as  ↑, closer to  , unknown à

resistive ??

• Physics
– Type I, II ELM onset à ideal stability limit

– i.e. peeling + ballooning

Peeling
+

ballooning

Edge kink

Curvature vs bending
mode


+

Pedestal, geometry
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• Some relation of ELM character to 

collisionality is observed

– Low collisionality à peeling ~ “more 

conductive”

– High collisionality à ballooning ~ “more 

convective”

• Many basic features of ELMs consistent 

with ideal MHD peeling-ballooning theory

• Pedestal perturbation structure resembles 

P-B eigen-function structure (?!)

Terra Firma: Conventional Wisdom of ELMs
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Some Physics Questions
• What IS the ELM?  Why is the ELM?

– ELMs single helicity or multi-helicity phenomena? 

Relaxation event ↔ pedestal avalanche?, turbulence spreading?

– How and why do actual bursts occur?

Why doesn’t turbulence force 	~	 oscillations?

– Pedestal turbulence develops during ELM. Thus, how do P-B modes 

interact with turbulence? – either ambient or as part of MH 

interaction?

– Does, or even should, the linear instability boundary define the actual 

ELM threshold?
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I) Basic Notions of ELMs:

ELM Bursts and Thresholds as

Consequence of Stochastic Phase Dynamics
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Simulation model and equilibrium in BOUT++
l 3-field model for nonlinear ELM 

simulations
ü Including essential physics for the 

onset of ELMs
Peeling-ballooning instability
Resistivity 
Hyper-resistivity
Ion diamagnetic effect

hyper resistivity
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Contrast of perturbation evolution (1/5 of the torus)

Linear phase Early nonlinear phase Late nonlinear phase
l Single mode: Filamentary structure is generated by linear instability;
l Multiple modes: Linear mode structure is disrupted by nonlinear mode interaction 

and no filamentary structure appears

Single 
Mode

Multiple 
Mode

/

Filaments
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Single mode: ELM crash || Multiple modes: P-B turbulence
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l ELM size larger for SMS

l SMS has longer duration linear 
phase than MMS 

Nonlinear Mode excitation

SMS MMS

(C)
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Relative Phase (Cross Phase) Dynamics

and Peeling-Ballooning Amplification
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Peeling-Ballooning Perturbation Amplification is 
set by Coherence of Cross-Phase

i.e. schematic P.B. energy equation:

  = 2 ×  ⋅  +∑  ,  , − ∑  ,   - dissipation

~  à energy release from 〈〉
nonlinear mode-mode
coupling

NL effects
- energy couplings to transfer energy (weak)
- response scattering to de-correlate  ,  è regulate drive

à quadratic

à quartic
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Growth Regulated by Phase Scattering

Critical element: relative phase =  [̂	/	]
 à  〈〉 à net growth à intensity field à crash?

transfer à dissipation (weak)
phase scattering

 à phase coherence time

Phase coherence time sets growth


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Cross Phase Exhibits Rapid Variation in Multi-Mode Case

• Single mode case à

coherent phase set by 

linear growth à rapid 

growth to ‘burst’

• Multi-mode case à

phase de-correlated by 

mode-mode scattering 

à slow growth to 

turbulent state
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Key Quantity: Phase Correlation Time
• Ala’ resonance broadening (Dupree ‘66):

  +  ⋅  +  ⋅  −  = −  

è  +  ⋅  +   ⋅  −  −  	 ⋅  = 0
 +  ⋅  +   ⋅  +    −  = −  

Relative phase ↔ cross-phase =  	 =  Amplitude

Velocity amplitude

Nonlinear 
scattering

Linear streaming
(i.e. shear flow)

Ambient 
diffusion

Damping by phase fluctuations

NL scattering shearing
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Phase Correlation Time
• Stochastic advection:

 =  ⋅  ⋅  +  = ∑   
• Stochastic advection + sheared flow:

 ≈   +   	 /
• Parallel conduction + diffusion:

 ≈ ̂  	∥	  +  /

è Coupling of radial scattering and
Shearing shortens phase correlation

è Coupling of radial diffusion
and conduction shortens phase correlation
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What is actually known about fluctuations 
in relative phase?

• For case of P.-B. turbulence, a broad PDF of phase correlation times is 

observed

pdf 
of 
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Implications for: i) Bursts vs Turbulence

ii) Threshold
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Bursts, Thresholds

• P.-B. turbulence can scatter relative phase and so reduce/limit 

growth of P.-B. mode to large amplitude

• Relevant comparison may be:

• Key point: Phase scattering for mode  set by ‘background 

modes ’  i.e. other P.-B.’s or micro-turbulence

è is the background strong enough??

 (linear growth)   vs   (phase de-correlation rate)
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The shape of growth rate spectrum determines burst or turbulence
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P-B turbulence

Isolated ELM crash



So When Does it Crash?
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Modest () Peaking è P.-B. turbulence

22'
00 /2 BqRPma -=

Normalized pressure gradient ()

29.2=a

• Evolution of P-B turbulence
• No filaments
• Weak radial extent

To
ro

id
al

Radial 
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Stronger Peaking () è ELM Crash

22'
00 /2 BqRPma -=

Normalized pressure 
gradient

()
44.2=a

• ELM crash is triggered
• Wide radial extension

To
ro

id
al

Radial 



Linear criterion for the onset of ELMs  >  is replaced by the nonlinear criterion  >  ∼ /	
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• 	is the critical growth rate which is determined by nonlinear 
interaction in the background turbulence

• N.B. 	/	 - and thus crit - are functionals of () peakedness

c
c

c g
t

ggt º>Þ>
10ln10ln

• Criterion for the onset of ELMs

• Linear limit

0lim >Þ¥® gt c



Nonlinear Peeling-ballooning model for ELM:
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Ø  < 0	: 
Linear stable region

Ø 0 <  < : Turbulent region
Possible ELM-free regimeà
Special state: EHO, QCM (?!)

Ø  > : 
ELMy region

ü Different regimes depend on 
both linear instability and the 
turbulence in the pedestal.

Including relevant linear physics 
(not only ideal P-B with ∗)
Resistivity / Electron inertia /… 

à Turbulence can maintain ELM-free states



29

How can these ideas be exploited

for ELM mitigation and control?
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ELMs can be controlled by reducing phase coherence time

RHS
B

C
t R =Ñ×

Ñ´
+

¶
¶ vfv b

• ELMs are determined by the product      ;
• Reducing the phase coherence time can limit the growth of instability; 

• Different turbulence states lead to different phase coherence times and, 
thus different ELM outcomes

i.e. scan  for fixed profiles 
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• Scattering field

• ‘differential rotation’ in  response to 
à enhanced phase de-correlation

Keys to 
Knobs:

- ExB shear

- Shaping

- Ambient diffusion

- Collisionality

Mitigation States:

- QH mode, EHO

- RMP

- SMBI

- …
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• QH-mode

– enhanced ExB shear à  	→ 	   /
– Triangularity strengthens shear via flux compression (Hahm, KHB)

– Enhanced de-correlation restricts growth time

Also:

– Is EHO peeling/kink + reduced ? How maintained?

– 〈〉′ works via  and 
N.B. See Bin Gui, Xu; for more on shearing effects 

Scenarios
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• RMP

–  =  ̂  	∥ /  =  +  
– RMP à   ↑ à enhanced de-correlation

or

– Enhanced flow damping à enhanced turbulence à increased 
(Leconte, P.D., Y. Xu)

• SMBI

– enhanced  à reduced  ?

and/or

– Disruption of pedestal avalanches?

Scenarios
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Phase Dynamic  à A Deeper Look
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Phase Dynamics in P.-B. Turbulence is INTERESTING

• i.e. usually  ∼  −  Δ 
sets phase coherence 

time by ~ linear processes à wave propagation and 

dispersion

• P.-B. turbulence in strong coupling regime 	 → 0, 

if insist on ∗, non-dispersive∴  set by nonlinear dynamics
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Phase Dynamics in P.-B. Turbulence is HARD

• Recall:

 +  ⋅ ∇ +   ⋅ ∇ − ∇ − 2 ∇ ⋅ ∇ = 0
 +  ⋅ ∇ +   ⋅ ∇ +  ∇  − ∇ = −  

– Turbulent , self-consistency?

– ,  coupling?

– Vorticity equation, Ohm’s law?
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Phase Dynamics in P-B Turbulence is HARD

• For hard problems recall advice of G. Polya in “How to 

Solve It”

~ “If you didn’t know how to solve a problem, convert it   

to an easier problem you do understand.”

• What familiar paradigm(s) does the phase dynamics 

problem resemble?
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Paradigms
• There are at least 2; both involving phase dynamics:

a) if ignore 2∇ ⋅ ∇	/	 : +  ⋅ ∇ +   ⋅  − ∇ = Noise
à scalar evolution with noise

à if ignore feedback on  à passive scalar∴ considerable body of insight into pdf[].
N.B. Little or no “physics” analysis of passive scalar statistics 

with shear flow
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A) Scalar

If   → 0 +  ⋅ ∇ − ∇ = 0
– PDF Δ as function r

– Significant deviation from Gaussian 

for smaller scales

– Approaches Gaussian at large 

scales 

– See also large kurtosis Expect strongly non-Gaussian 
phase statistics
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b) If ignore or simplify spatial structure, have synchronization    

problem ßà Kuramoto

i.e.

i) Single oscillator  = − + 	  +  
ii)      Oscillator lattice, continuum à

 , =   + ∇ ,  +  ∇  +  (extended	KPZ)
roughening synchronization

coherencede-coherence
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B) Noisy Phase Dynamics ßà Single Oscillator

• Phase slips occur

• Phase slips resemble 

cross phase jumps

• Observe
– No noise (blue) à phase diffusive, distribution flat

– Weak noise (red) à phase slips occur, distribution narrow

– Strong noise (black) à more phase slips, broader distribution
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Note:

à Qualitative consistency of noisy oscillator phase 

and P.-B. turbulence cross phase

i.e. slips/jumps occurrence increase with 

noise/turbulence level

à in P.-B. turbulence, 

– noise multiplicative

– profile evolution introduces another interaction channel.
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à Phase Dynamics Problem 

Promising but Challenging
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Conclusions – Coarse Grained
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• ELM phenomena are intrinsically multi-mode and 

involve turbulence

• P.-B. growth regulated by phase correlation

à determines crash + filament vs turbulence

• Phase coherence can be exploited for ELM 

mitigation

Conclusions
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Where to Next?
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• Simulations MUST move away from IVP – even if 

motivated by experiment – and to dynamic profile 

evolution, with:

– sources, sinks i.e. flux drive and particle source essential

– pedestal transport model

– anomalous electron dissipation

i.e. à - what profiles are actually achieved?

- how evolve near P.-B. marginality?
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• Should characterize:

– pdf of phase fluctuations, correlation time

– Dependence on  control parameters

– Threshold for burst

• Need understand feedback of P.-B. growth on turbulent 

hyper-resistivity

• Continue to develop and extend reduced models.



49

Some Inflammatory Questions

• Why bother with RMP?

– Focus on ‘self-kinked state’ of QH with EHO.        

Is this relevant and reproducible?

• Is SMBI ELM mitigation due:

– phase de-correlation?

– avalanche fragmentation?

à stability of SMBI-mitigated EAST profiles?


